Journal of Advanced Medical and Dental Sciences Research

@Society of Scientific Research and Studies *NLM ID: 101716117*

Journal home page[: www.jamdsr.com](about:blank) doi: 10.21276/jamdsr Indian Citation Index (ICI) Index Copernicus value = 100

(e) ISSN Online: 2321-9599; (p) ISSN Print: 2348-6805

Original Research

Assessment of change in thickness of aligner using vacuum and pressure thermoforming techniques: An in –vitro study

Singh Deepshikha KrishnaKailash¹, Sunanda Roychoudhury², Kumar Amit³, Powlamy Basu⁴, Gandla Karthik Santosh⁵, Nakash Yousuf K⁶

^{1,4,5,6}Post Graduate, ²Professor & Head of Department, ³Associate Professor, Department of Orthodontics & Dentofacial Orthopaedics, Shree Bankey Bihari Dental College & Research Centre, Ghaziabad, Uttar Pradesh, India

ABSTRACT:

Background: Clear aligners are among the most chosen orthodontic therapy for an invisible treatment. Aligners are formed using different polymers and thermoforming techniques. Previous studies have shown that the thermoforming process might alter the physical properties of clear aligners. From various studies in literature it was found that the thickness of aligner material is directly related to the applied force by the aligner on the tooth surface. Thicker material reduces aligner flexibility, enhances its rigidity, and leads to an increase in the force generated. The forces produced by aligners made from the 0.75-mm thick material were significantly higher than those made from 0.5mm-thick material. Our aim of this study was to assess the change in thickness of clear aligners after using different thermoforming technique (vacuum and pressure technique) with polyethylene terephthalate glycol (PET-G) and Polyurethane (PU). **Aim:** The aim of the study was to evaluate changes in thickness of aligner after thermoforming using different techniques, evaluated at different occlusal points.**Materials and methods:** In-house clear aligners were thermoformed using different thermoforming technique (vacuum and pressure technique) with PET-G and PU aligner material. In-house clear aligners of the patients were scanned with 3-D scanner (Shining 3D) using developer. The thickness of the clear aligners was measured at different occlusal points on a 3D model with software (Mesh mixer).The data in this study were obtained and statistically examined.**Results:** The thermoforming process showed good reproducibility for both the aligner. The thickness in both the process showed significant changes in both the thermoforming process at various selected points. PU aligners exhibited significantly greater thickness compared to PET-G aligners.**Conclusion:** Our findings underscore the importance of thermoforming methods in determining aligner performance, as even minor thickness differences can affect treatment effectiveness and patient comfort. The pressure thermoforming technique produced aligners with superior consistency and precision, enhancing the accuracy and predictability of tooth movements

Key words: Clear Aligners, Thermoforming Techniques, Aligner Thickness, Vacuum Forming, Pressure Forming, Orthodontic Treatment

Received: 24 August, 2024 Accepted: 27 September, 2024

Corresponding author: Singh Deepshikha KrishnaKailash, Post Graduate, Department of Orthodontics & Dentofacial Orthopaedics, Shree Bankey Bihari Dental College & Research Centre, Ghaziabad, Uttar Pradesh, India

This article may be cited as: KrishnaKailash SD, Roychoudhury S, Amit K, Basu P, Santosh GK, K Nakash Y. Assessment of change in thickness of aligner using vacuum and pressure thermoforming techniques: An in –vitro study**.** J Adv Med Dent Scie Res 2024; 12(10):66-88.

INTRODUCTION

Orthodontic treatment has evolved significantly in recent years, with a growing emphasis on aesthetics alongside traditional considerations like comfort and efficiency.¹Patients—both adolescents and adults are increasingly prioritizing visual appeal, seeking orthodontic solutions that effectively move teeth while being discreet. This shift in demand has led to the rising popularity of clear aligners as an alternative

to conventional braces.² In era of digital dentistry, particularly through the emergence of computeraided design and manufacturing (CAD/CAM) technologies has benefitted in advancement of clear aligners. ³ These innovations have improved the production of clear, removable aligners made from thermoplastic materials, enabling the creation of customized dental devices that guide teeth from their misaligned positions to desired final

alignments.⁴Align Technology, Inc.'s introduction of clear aligner systems marked a significant shift in orthodontic treatment, building on foundational work by early innovators like Kesling and Nahoum.⁵ The performance of clear aligners is influenced by several factors, including the choice of thermoplastic materials and the fabrication techniques employed.⁶Common materials used in aligners include polyurethane (PU), polyethylene terephthalate (PET), and polyethylene terephthalate glycol (PET-G), all of which are favored for their transparency, flexibility, and biocompatibility.⁷ However, these thermoplastic materials are not chemically inert; they can be affected by factors in the oral environment, such as temperature, humidity, and saliva, which may lead to material degradation and reduce the effectiveness of the aligners.⁸ A critical aspect of clear aligner therapy is the thickness of the aligners, which significantly affects the distribution of forces on the teeth and, consequently, the predictability of treatment outcomes.⁹

Research has shown that variations in aligner thickness can influence the efficacy of tooth movement. ¹⁰For example, studies indicate that successful tooth movement typically occurs at aligner thicknesses ranging from approximately 0.25 to 0.33
mm.¹¹ Moreover, the technique used in mm.¹¹ Moreover, the technique used in thermoforming aligns affects both the accuracy and fit of the aligners.¹² Common methods include vacuum forming, which uses negative pressure to adapt heatsoftened plastic over a cast, and pressure forming, which employs both positive and negative air pressures to achieve precise contours.¹³ Aligner thickness can also vary between segments, with research suggesting that thickness decreases postthermoforming, particularly in the anterior segments compared to the posterior ones.¹⁴ Optimizing aligner thickness is essential for controlled and predictable tooth movements while ensuring patient comfort and durability. Given these considerations, this study aims to evaluate the changes in aligner thickness when employing vacuum versus pressure thermoforming techniques.¹⁵By systematically comparing these methods, the study aims to gain insights into their effects on aligner reproducibility and overall treatment efficiency. The findings will contribute to a deeper understanding of how fabrication techniques can be optimized to enhance the effectiveness of clear aligner therapy, ultimately leading to improved patientoutcomes.Aligners are fabricated by thermoforming aligner sheets using either pressure or

vacuum techniques, both of which can alter the thickness of the aligner sheet and impact its biomechanics. Understanding the effects of different thermoforming methods on aligner thickness is crucial to ensure the selection of appropriate materials and techniques without compromising aligner performance. This study assesses the reproducibility of these thermoforming techniques and their impact on aligner thickness, evaluating measurements at various occlusal points. By examining the changes in thickness after thermoforming and comparing the results of pressure and vacuum techniques, the research aims to provide insights into how these methods influence the final aligner thickness. Ultimately, this investigation seeks to enhance the understanding of aligner fabrication processes and offer valuable information for orthodontic practitioners in choosing the most effective thermoforming techniques and aligner materials.¹⁶

AIM

The aim of the study was to evaluate changes in thickness of aligner after thermoforming using different techniques, evaluated at different occlusal points.

OBJECTIVES

- To assess the change in thickness of aligner sheet after pressure and vacuum thermoforming.
- To compare the change in thickness of PET-G and PU sheets after pressure and vacuum thermoforming technique.
- To compare the change in thickness at different occlusal points between right and left side of the aligner.
- To assess the reproducibility of thermoformed aligner.

METHODOLOLOGY

Sample size estimation: The samples consisted of 20 aligners which were thermoformed in the department of Orthodontics and Dentofacial Orthopaedics in Shree Bankey Bihari Dental College and Research Centre, Ghaziabad, Uttar Pradesh, India.

Armamentarium: PET-G sheets, PU sheets, Ideal cast model, Pressure thermoforming machine, Vacuum thermoforming , Aligner trimming burs, Scanner, Contrast spray , Meshmixer software, Anycubic Resin (**Figure 1-8**)

Figure 1: Left and right reference points adopted for the measurement of the thickness of the aligners

Figure 2: Vacuum thermoforming machine (Plastvac-Pt)

Figure 3: Pressure thermoforming machine (Ministar)

Figure 4: 3D Printed Model

Figure 5: Aligner sheet

Figure 6: Contrast Spray (Telescan)

Figure 7: Scanner (Shining -3D)

Figure 8: Trimmed and polished aligner

Procedure:Creation of Ideal Resin Cast Model: The ideal cast models were scanned using an optical scanner (Shining 3D), and the resulting scans were converted into Stereolithographic (STL) files. These STL files were then imported into Chitu Box for

printing with Anycubic Resin, resulting in the production of 3D printed resin casts.

Thermoforming of Aligners: Twenty aligners were thermoformed using pressure thermoforming and vacuum thermoforming techniques. The pressure

thermoforming machine (e.g., Ministar) was used to thermoform the PET-G and PU sheets. The vacuum thermoforming machine (PLASTOVIT PT) was used for the vacuum thermoforming process.

Aligner Trimming: After thermoforming, the aligners were meticulously trimmed using Scheu trimming burs to achieve the desired shape and fit. To facilitate scanning, a contrast spray was applied, as the translucent nature of the aligners made them unsuitable for direct scanning. The spray was applied from a distance of 15mm to ensure even coverage. The aligners were then positioned on an optical scanner, and the scanning process commenced. The optical scanner captured three-dimensional (3D) images of the aligners, generating STL files.

Data analysis involved importing scanned STL files into Meshmixer software (version 3.5.474), where a single operator focused on the cameo and intaglio surfaces of the aligners. Various reference points were established on the incisors, canines, premolars, and molars on both the left and right sides of the maxillary arch, including midpoints on incisal edges and centers of buccal and palatal cusps.

The collected data were analyzed to evaluate aligner thickness at different occlusal points, comparing thermoformed aligner thickness with the original dimensions, assessing thickness differences between the right and left sides, and evaluating changes postthermoforming. The study specifically compared the thickness of PET-G and PU sheets after pressure and vacuum thermoforming. Statistical analysis was conducted using SPSS (version 21.0), applying the Shapiro-Wilk test for normal distribution assessment. Given that the data was normally distributed, bivariate analyses were performed using the Independent t-test and Paired t-test for intergroup and intragroup comparisons, with a significance level set at $p < 0.05$.

RESULTS

The study aimed to assess thickness variations in aligners produced using pressure and vacuum thermoforming techniques with PET-G and PU materials. Normal distribution of the data was confirmed through the Shapiro-Wilk test, revealing significant thickness variations due to different thermoforming methods and materials. Detailed analyses presented in **Tables 1 -4** highlighted these differences, while intergroup comparisons (**Table 5-7**) using independent t-tests indicated statistically significant distinctions between PU and PET-G aligners ($p < 0.05$), underscoring the material's impact on fabrication. The thickness sequences for the different groups varied significantly (**Table 7-9 and graph 1-2**). The greatest thickness was observed in the 5P sample of Group 2 V, while the least thickness was recorded in the 4P sample of Group 1 V, emphasizing the complexities involved in aligner fabrication and the influence of both technique and material on final outcomes.In Group 1 P, the order was $2M > 1M > 2PM > 1PM > 2I > 11 > 3C$. For Group 2 V, the thickness sequence was $1M > 2M >$ $2PM > 2I > 1I > 3C > 1PM$, while in Group 2 P, the order was $11 > 21 > 7M > 1M > 2PM > 1PM > 3C$. Notably, in Group 2 V, the thickness sequence reiterated as $1M > 2M > 2PM > 1PM > 3C > 11 > 2I$, highlighting the distinct thickness characteristics across the various aligner configurations. A comparative analysis of thickness between the right and left sides showed no substantial differences for both aligner types (**Table 10-11**). Regional variations were noted; although thickness in the incisor region was consistent for both materials, significant differences emerged in the canine, premolar, and molar regions (**Table 12**).

REFERENCE POINTS	Sample 1		Sample 2		Sample 3		Sample 4		Sample 5		Mean $(\pm \mathbf{mm})$
	LEFT	RIGHT									
11	0.55	0.56	0.59	0.58	0.5	0.54	0.54	0.52	0.59	0.49	0.546
2I	0.54	0.5	0.64	0.59	0.57	0.58	0.59	0.58	0.56	0.59	0.574
C ₃	0.59	0.55	0.45	0.51	0.51	0.53	0.55	0.53	0.56	0.57	0.535
B4	0.51	0.54	0.59	0.53	0.59	0.56	0.56	0.51	0.57	0.51	0.547
P4	0.53	0.58	0.47	0.48	0.43	0.47	0.52	0.48	0.41	0.42	0.479
B5	0.63	0.42	0.57	0.45	0.57	0.46	0.53	0.45	0.49	0.43	0.5
P5	0.61	0.55	0.59	0.49	0.58	0.56	0.61	0.45	0.59	0.47	0.55
MB ₆	0.75	0.55	0.69	0.45	0.55	0.53	0.55	0.51	0.54	0.52	0.564
MP ₆	0.78	0.58	0.7	0.48	0.58	0.57	0.58	0.54	0.56	0.56	0.593
DB ₆	0.78	0.58	0.74	0.54	0.46	0.56	0.55	0.59	0.53	0.55	0.588
DP ₆	0.71	0.59	0.68	0.53	0.54	0.59	0.51	0.57	0.49	0.51	0.572
MB7	0.62	0.53	0.65	0.56	0.52	0.51	0.52	0.53	0.54	0.53	0.551
MP7	0.59	0.55	0.47	0.59	0.59	0.54	0.59	0.55	0.56	0.56	0.559
DB7	0.62	0.56	0.49	0.52	0.62	0.58	0.59	0.53	0.59	0.53	0.563
DP7	0.64	0.57	0.59	0.55	0.63	0.58	0.54	0.57	0.52	0.59	0.578

Table 1: ± Mean in mm of Group 1P at different reference points

REFERENCE	Sample 1		$_{\rm min}$ or $_{\rm 01}$ oup $_{\rm 1}$, at aniterent reference points Sample 2		Sample 3		Sample 4		Sample 5		Mean
POINTS											$(\pm \mathbf{mm})$
	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT	
1 _I	0.45	0.44	0.43	0.51	0.49	0.53	0.51	0.49	0.43	0.47	0.475
2I	0.36	0.47	0.44	0.49	0.51	0.52	0.49	0.51	0.48	0.49	0.476
C ₃	0.51	0.42	0.44	0.34	0.45	0.44	0.44	0.42	0.46	0.43	0.435
B4	0.43	0.44	0.45	0.43	0.45	0.46	0.46	0.47	0.4	0.45	0.444
P4	0.47	0.39	0.45	0.31	0.37	0.36	0.38	0.33	0.26	0.36	0.368
B5	0.47	0.48	0.37	0.44	0.37	0.43	0.37	0.38	0.38	0.35	0.404
P5	0.41	0.52	0.43	0.51	0.44	0.43	0.32	0.49	0.36	0.46	0.437
MB ₆	0.6	0.65	0.57	0.55	0.54	0.55	0.56	0.59	0.53	0.58	0.572
MP ₆	0.56	0.61	0.56	0.59	0.56	0.59	0.48	0.6	0.5	0.61	0.566
DB ₆	0.59	0.54	0.57	0.57	0.53	0.51	0.49	0.53	0.49	0.54	0.536
DP ₆	0.57	0.41	0.49	0.4	0.56	0.41	0.47	0.41	0.49	0.45	0.466
MB7	0.65	0.46	0.45	0.42	0.55	0.45	0.58	0.47	0.57	0.44	0.504
MP7	0.63	0.64	0.53	0.54	0.62	0.64	0.59	0.54	0.56	0.56	0.585
DB7	0.62	0.52	0.57	0.51	0.67	0.51	0.62	0.48	0.61	0.44	0.555
DP7	0.64	0.34	0.58	0.54	0.64	0.44	0.64	0.34	0.63	0.36	0.515

Table 2: ± Mean in mm of Group 1 V at different reference points

Table 3: ± Mean in mm of Group 2P at different reference points

Table 4: ± Mean in mm of Group 2V at different reference points

Independent t test, statistical significance at $p<0.05-*$

Graph 1 Change in thickness of aligner in Group 1(PET-G) and Group 2(PU)

Group 1 showed greater change in thickness when compared with Group 2

Table 6: Comparison of thickness between Group 1 P and Group 1 V

Paired t test, statistical significance at $p<0.05-*$

Table 7: Comparison of thickness of aligners between Group 2 P and Group 2 V

Paired t test, statistical significance at $p<0.05-*$

The blue colour denotes the pressure thermoforming and green colour denotes vacuum thermoforming.

Table 8: Comparison of thickness of aligners with pressure thermoforming

	Mean	Std. Deviation	Std. Error Mean
PU	0.6040	0.02480	0.007
PET-G	0.5453	0.03011).009
			$0.001*$

Independent t test, statistical significance at $p<0.05-*$

Table 9: Comparison of thickness of aligners with vacuum thermoforming

Independent t test, statistical significance at $p<0.05-*$

Table 10: Comparison of aligners on right and left side in PU samples

Table 11: Comparison of aligners on right and left side in PET- G samples

Table 12: Comparison of aligner thickness in different regions among PU and PET- G sample

DISCUSSION

The study aimed to investigate the thickness of aligners post-thermoforming using diverse techniques and materials, providing critical insights into the variations in aligner thickness and their implications for orthodontic treatment planning and fabrication.To our knowledge, no prior research has compared pressure thermoforming and vacuum thermoforming using PET-G and PU aligner materials.¹⁷ Significant differences in aligner thickness were identified between the two thermoforming methods, with vacuum thermoforming yielding thinner aligners than pressure thermoforming.¹⁸ This variation can be attributed to the exposure of thermoplastic materials to inconsistent temperatures and durations, leading to a reduction in thickness.¹⁹ Furthermore, the study revealed a noteworthy difference in thickness between PU and PET-G materials, with PU aligners demonstrating greater thickness.²⁰ This discrepancy is likely due to the intrinsic properties of the materials and their behavior during thermoforming; PU may exhibit higher elasticity or stretch characteristics, resulting in increased thickness post-process.²¹The choice of aligner material is crucial as it has significant impact on the accuracy of toothmovements and treatment efficacy. ²² Orthodontic practitioners should meticulously evaluate material properties and the associated variations in thickness when choosing materials for aligner fabrication.²³ A comprehensive analysis of aligner thickness at various reference points highlighted the importance of uniform thickness distribution across the arch. 24 Consistent thickness is essential for achieving predictable and reliable tooth movements.²⁵Significant thickness discrepancies were also observed among different regions within both materials. A similar study by Bucci et al. using PET-G identified variability in thickness across the occlusal surface, ranging from 0.35 to 0.69 mm.²⁶This finding underscores the need for customized aligner designs tailored to the specific requirements of each region, including incisors, canines,premolars, and molars.²⁷ Recognizing regional thickness variations facilitates optimized treatment planning and the attainment of desired outcomes.²⁸Overall, the study underscores considerable variations in aligner thickness arising from different thermoforming techniques and materials.²⁹ The distinctions between pressure and vacuum thermoforming methods, as well as between PU and PET-G materials, emphasize the necessity for careful consideration in manufacturing processes and material selection during aligner

fabrication.³⁰Practitioners must acknowledge these variations and their implications for treatment efficacy, accuracy of tooth movement, and overall predictability.³¹Future research should prioritize determining the optimal aligner thickness for specific treatment objectives and evaluating the long-term effects of thickness variations on orthodontic outcomes.³² Our findings are consistent with previous studies, including Mantovani et al., who reported mean thickness values for unused Invisalign aligners in the central incisor region ranging from 0.582 mm to 0.639 mm.³³ Similarly, Palone et al. assessed the effects of thermoforming across six aligner systems, noting reduced thickness and gap width in anterior teeth compared to posterior regions.³⁴Further investigations by Hahn et al. highlighted how aligner materials and the thermoforming process influence the force delivered by appliances, while Kwon et al. recommended setup increments between 0.2 mm and 0.5 mm to prevent excessive force on teeth.^{35, 36} Ryokawa et al. studied forces exerted by various aligner specimens under simulated intraoral conditions, observing thickness reductions of 7.4% to 25.1% due to thermoforming and water absorption, with notable increases in thickness after absorption.³⁷ Elkholy et al. explored the viscoelastic behavior of PET-G aligners, finding that initial loads diminish following intraoral insertion.³⁸These collective studies emphasize the critical importance of aligner material selection and the implications of thickness variations(**Table 13**).¹⁻⁴²While our study has limitations, such as a small sample size and a focus on specific measurement points, larger studies with broader criteria are needed to validate and generalize these findings. Numerous studies have investigated changes in aligner thickness due to vacuum and pressure thermoforming, revealing significant insights into the effects of material selection and manufacturing methods on treatment efficacy.⁴³Notably, vacuum thermoforming often yields thinner aligners than pressure thermoforming, with distinct differences in thickness and mechanical properties between materials like PET-G and polyurethane (PU).⁴⁴ Research has shown that thickness variations, particularly in canines, premolars, and molars, can influence the predictability of tooth movements. Advanced imaging and statistical analysis techniques have enhanced understanding of orthodontists and dentists how these variables optimize aligner performance and overall orthodontic outcomes.45

Study	Year	Objective	Materials	Methods	Key Findings	Implications
Bergstrom K	1998	Analyze	Orthodontic	Questionnair	121 treated	Highlights
et al.		perceptions of dental	ally treated and untreated	e sent to	individuals and 76 untreated;	importance of
		arrangement		participants	perceptions	patient perceptions in
		in young			varied based	treatment
		adults			on treatment	outcomes
					received.	
Ryokawa H	2006	Assess	EVA, PE,	Simulated	Water	Understanding
et al.		mechanical properties of	PETG, PP,	intraoral environment	absorption increased over	material properties is
		dental	PC, A+, C+, PUR	tests	time; thickness	crucial for
		thermoplastic			changes	orthodontic
		materials			ranged from	applications
					74.9% to	
					92.6%. Elastic moduli varied	
					significantly;	
					behavior	
					influenced by	
					environmental	
Johal A et al.	2007				factors.	
		Compare fit of different	$ACE, C+,$ True Tain,	Laboratory- based study	Significant differences in	Importance of material
		thermoform	Iconic Clear	with master	fit among the	selection for
		retainer		dental casts	four	optimal
		materials			materials (P	retainer fit
					< 0.001). C+ showed the	
					greatest	
					difference.	
Kwon J et al	2008	Evaluate	Three types	Three-point	Optimal	Thin materials
		force and	α f	bending-	force	may be
		energy delivery	thermoplasti c materials	recovery tests,	delivery deflection	preferable for effective force
		properties of		Vickers	was 0.2 to	delivery
		thermoplasti		hardness	0.5 mm; thin	
		c materials			Materials	
					delivered higher	
					energy.	
					Thermocycli	
					ng affected	
					properties,	
					but repeated load cycling	
					showed	
					significant	
					differences.	
Hahn et al.	2009	Quantify	Erkodur	Force	Forces	Highlights the
		forces	(1.0, 0.8)	measuremen	applied were	need for
		delivered by thermoplasti	mm), Biolon (1.0, 0.75)	t on a standardized	often higher than ideal;	careful material and
		c appliances	mm)	resin model	thickness and	thickness
		during			thermoformi	selection
		tipping			ng process	
					significantly	

Table 13: Implications of various studies on assessment of change in thickness of aligner using vacuum and pressure thermoforming techniques

Future Prospects: Ongoing advancements in orthodontic materials and techniques present several exciting avenues for future research and clinical practice regarding aligners. Key prospects include the development of new thermoplastic substances with superior characteristics—such as enhanced strength, reduced wear, and improved biocompatibility—that could significantly elevate the performance of clear aligners, along with the exploration of biodegradable or bioactive materials to promote sustainability in orthodontics. Continued refinement of thermoforming processes and the investigation of alternative methods like 3D printing could enhance the precision and adaptability of aligner fabrication.⁴⁶Longitudinal studies assessing the durability and efficacy of aligners over extended periods will provide valuable insights into the longevity and effectiveness of various materials and techniques.⁴⁷Additionally, developing patient-centric designs through personalized treatment plans can boost satisfaction and outcomes, facilitated by cutting-edge imaging and modeling technologies.⁴⁸The integration of digital workflows, including artificial intelligence and machine learning, has the potential to revolutionize treatment planning by optimizing aligner design and movement protocols.⁴⁹Establishing standardized protocols for material selection and aligner thickness based on empirical evidence can empower orthodontists to make informed decisions and enhance treatment results.⁵⁰ Furthermore, innovations like smart aligners equipped with sensors to monitor wear and compliance could significantly improve patient adherence to treatment regimens.⁵¹

Finally, further investigation into the biomechanics of tooth movement with various aligner configurations and materials will enable orthodontists to refine strategies, ensuring predictable and efficient outcomes.⁵² By embracing these prospects, the field of orthodontics can continue to evolve, enhancing the

effectiveness and appeal of clear aligner therapy for a broader range of patients.⁵³ Future studies should continue to explore these factors and their long-term impacts on treatment effectiveness; ensuring aligner designs are tailored to meet patient-specific needs.⁵⁴

CONCLUSION

This study identified significant variations in aligner thickness attributable to vacuum and pressure thermoforming techniques, with PU aligners demonstrating greater thickness than PET-G aligners. These findings pave the way for further advancements in aligner production, benefiting both practitioners and patients alike. These findings underscore the importance of thermoforming methods in determining aligner performance, as even minor thickness differences can affect treatment effectiveness and patient comfort. The pressure thermoforming technique produced aligners with superior consistency and precision, enhancing the accuracy and predictability of tooth movements. Careful selection of thermoforming techniques and materials is essential for optimizing treatment outcomes. Future research should focus on the long-term effects of thickness variations on clinical efficacy and patient satisfaction. A deeper understanding of these factors will enable orthodontic practitioners to make more informed decisions, ultimately improving the quality of clear aligner therapy and enriching patient experiences.

REFERENCES

- 1. Papadimitriou A, Mousoulea S, Gkantidis N, Kloukos D. Clinical effectiveness of Invisalign® orthodontic treatment: a systematic review. Prog Orthod. 2018; 19 $(1):37.$
- 2. Tartaglia GM, Mapelli A, Maspero C, Santaniello T, Serafin M, Farronato M, et al. Direct 3D Printing of Clear Orthodontic Aligners: Current State and Future Possibilities. Materials. 2021; 14 (7):1799.
- 3. Shalish M, Cooper-Kazaz R, Ivgi I, Canetti L, Tsur B, Bachar E, et al. Adult patients' adjustability to orthodontic appliances. Part I: a comparison between Labial, Lingual, and Invisalign. Eur J Orthod. 2012; 34 $(6):724-30.$
- 4. Bergstrom K. Orthodontic care from the patients' perspective: perceptions of 27-year-olds. Eur J Orthod. 1998; 20(3):319–29.
- 5. Ryu JH, Kwon JS, Jiang HB, Cha JY, Kim KM. Effects of thermoforming on the physical and mechanical properties of thermoplastic materials for transparent orthodontic aligners. Korean J Orthod. 2018; 48(5):316.
- 6. Dalaie K, Fatemi SM, Ghaffari S. Dynamic mechanical and thermal properties of clear aligners after thermoforming and aging. Prog Orthod. 2021; 22(1):15.
- 7. Lombardo L, Palone M, Longo M, Arveda N, Nacucchi M, De Pascalis F, et al. MicroCT X-ray comparison of aligner gap and thickness of six brands of aligners: an in-vitro study. Prog Orthod. 2020; 21(1):12.
- 8. Johal A, Sharma NR, McLaughlin K, Zou LF. The reliability of thermoform retainers: a laboratory-based comparative study. Eur J Orthod. 2015; 37(5):503–7.
- 9. Bucci R, Rongo R, Levatè C, Michelotti A, Barone S, Razionale AV, et al. Thickness of orthodontic clear aligners after thermoforming and after 10 days of intraoral exposure: a prospective clinical study. Prog Orthod. 2019; 20(1):36.
- 10. Nascimento G, Lemos CA, Rios L, de Oliveira R, de Almeida A, Oliveira J. Comparative analysis of the mechanical properties and surface characteristics of different clear aligner materials. J Prosthet Dent. 2024; 131(3):388–95.
- 11. Johal A, Sharma NR, McLaughlin K, Zou LF. The reliability of thermoform retainers: a laboratory-based comparative study. Eur J Orthod. 2015; 37(5):503–7.
- 12. Zinelis S, Panayi N, Polychronis G, Papageorgiou SN, Eliades T. Comparative analysis of mechanical properties of orthodontic aligners produced by different contemporary 3D printers. Orthod Craniofac Res. 2022; 25(3):336–41.
- 13. Ho CT, Huang YT, Chao CW, Huang TH, Kao CT. Effects of different aligner materials and attachments on orthodontic behavior. J Dent Sci. 2021; 16(3):1001– 9.
- 14. Walton DK, Fields HW, Johnston WM, Rosenstiel SF, Firestone AR, Christensen JC. Orthodontic appliance preferences of children and adolescents. Am J Orthod Dentofacial Orthop. 2010; 138(6):698.e1-698.e12.
- 15. Shalish M, Cooper-Kazaz R, Ivgi I, Canetti L, Tsur B, Bachar E, et al. Adult patients' adjustability to orthodontic appliances. Part I: a comparison between Labial, Lingual, and Invisalign. Eur J Orthod. 201; 34(6):724–30.
- 16. Kohda N, Iijima M, Muguruma T, Brantley WA, Ahluwalia KS, Mizoguchi I. Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances. Angle Orthod. 2013; 83(3):476–83.
- 17. Dasy H, Dasy A, Asatrian G, Rózsa N, Lee HF, Kwak JH. Effects of variable attachment shapes and aligner material on aligner retention. Angle Orthod. 2015; 85(6):934–40.
- 18. Gerard Bradley T, Teske L, Eliades G, Zinelis S, Eliades T. Do the mechanical and chemical properties

of Invisalign TM appliances change after use? A retrieval analysis. Eur J Orthod. 2016; 38(1):27–31.

- 19. Elkholy F, Schmidt F, Jäger R, Lapatki BG. Forces and moments applied during derotation of a maxillary central incisor with thinner aligners: An in-vitro study. Am J Orthod Dentofacial Orthop. 2017; 151(2):407– 15.
- 20. Eksi O, Karabeyoğlu S. The effect of process parameters on thickness distribution in thermoforming. Adv Sci Technol Res J. 2017; 11(2):198–204.
- 21. Gao L, Wichelhaus A. Forces and moments delivered by the PET-G aligner to a maxillary central incisor for palatal tipping and intrusion. Angle Orthod. 2017; 87(4):534–41.
- 22. Lombardo L, Martines E, Mazzanti V, Arreghini A, Mollica F, Siciliani G. Stress relaxation properties of four orthodontic aligner materials: A 24-hour in vitro study. Angle Orthod. 2016; 87(1):11–8.
- 23. Tamburrino F, D'Antò V, Bucci R, Alessandri-Bonetti G, Barone S, Razionale AV. Mechanical Properties of Thermoplastic Polymers for Aligner Manufacturing: In Vitro Study. Dent J. 2020; 8(2):47.
- 24. Ryu JH, Kwon JS, Jiang HB, Cha JY, Kim KM. Effects of thermoforming on the physical and mechanical properties of thermoplastic materials for transparent orthodontic aligners. Korean J Orthod. 2018; 48(5):316.
- 25. Condo' R, Pazzini L, Cerroni L, Pasquantonio G, Lagana' G, Pecora A, et al. Mechanical properties of "two generations" of teeth aligners: Change analysis during oral permanence. Dent Mater J. 2018; 37(5):835–42.
- 26. Bucci R, Rongo R, Levatè C, Michelotti A, Barone S, Razionale AV, et al. Thickness of orthodontic clear aligners after thermoforming and after 10 days of intraoral exposure: a prospective clinical study. Prog Orthod. 2019; 20(1):36.
- 27. Elkholy F, Schmidt S, Amirkhani M, Schmidt F, Lapatki BG. Mechanical Characterization of Thermoplastic Aligner Materials: Recommendations for Test Parameter Standardization. J Healthc Eng. 2019; 2019:1–10.
- 28. Jindal P, Juneja M, Siena FL, Bajaj D, Breedon P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am J Orthod Dentofacial Orthop. 2019; 156(5):694–701.
- 29. Weckmann J, Scharf S, Graf I, Schwarze J, Keilig L, Bourauel C, et al. Influence of attachment bonding protocol on precision of the attachment in aligner treatments. J Orofac Orthop Fortschritte Kieferorthopädie. 2020; 81(1):30–40.
- 30. Dalaie K, Fatemi SM, Ghaffari S. Dynamic mechanical and thermal properties of clear aligners after thermoforming and aging. Prog Orthod. 2021; 22(1):15.
- 31. Suter F, Zinelis S, Patcas R, Schätzle M, Eliades G, Eliades T. Roughness and wettability of aligner materials. J Orthod. 2020; 47(3):223–31.
- 32. Edelmann A, English JD, Chen SJ, Kasper FK. Analysis of the thickness of 3-dimensional-printed orthodontic aligners. Am J Orthod Dentofacial Orthop. 2020; 158(5):e91–8.
- 33. Mantovani E, Castroflorio E, Rossini G, Garino F, Cugliari G, Deregibus A, et al. Scanning electron microscopy evaluation of aligner fit on teeth. Angle Orthod. 2018; 88(5):596–601.
- 34. Palone M, Longo M, Arveda N, Nacucchi M, Pascalis FD, Spedicato GA, et al. Micro-computed tomography evaluation of general trends in aligner thickness and gap width after thermoforming procedures involving six commercial clear aligners: An in vitro study. Korean J Orthod. 2021; 51(2):135–41.
- 35. Kwon JS, Lee YK, Lim BS, Lim YK. Force delivery properties of thermoplastic orthodontic materials. Am J Orthod Dentofacial Orthop. 2008; 133(2):228–34.
- 36. Hahn W, Dathe H, Fialka-Fricke J, Fricke-Zech S, Zapf A, Kubein-Meesenburg D, et al. Influence of thermoplastic appliance thickness on the magnitude of force delivered to a maxillary central incisor during tipping. Am J Orthod Dentofacial Orthop. 2009; 136 (1):12.e1-12.e7.
- 37. Ryokawa H, Miyazaki Y, Fujishima A, Miyazaki T, Maki K. The mechanical properties of dental thermoplastic materials in a simulated intraoral environment. Orthod Waves. 2006; 65 (2):64–72.
- 38. Golkhani B, Weber A, Keilig L, Reimann S, Bourauel C. Variation of the modulus of elasticity of aligner foil sheet materials due to thermoforming. J Orofac Orthop Fortschritte Kieferorthopädie. 2022; 83(4):233–43.
- 39. Mantovani E, Parrini S, Coda E, Cugliari G, Scotti N, Pasqualini D, et al. Micro computed tomography evaluation of Invisalign aligner thickness homogeneity. Angle Orthod. 2021; 91(3):343–8.
- 40. Nucera R, Dolci C, Bellocchio AM, Costa S, Barbera S, Rustico L, et al. Effects of Composite Attachments on Orthodontic Clear Aligners Therapy: A Systematic Review. Materials. 2022; 15(2):533.
- 41. Koenig N, Choi JY, McCray J, Hayes A, Schneider P, Kim KB. Comparison of dimensional accuracy between direct-printed and thermoformed aligners. Korean J Orthod. 2022; 52(4):249–57.
- 42. Chen SM, Ho CT, Huang TH, Kao CT. An in vitro evaluation of aligner force decay in artificial saliva. J Dent Sci. 2023; 18(3):1347–53.
- 43. Park SY, Choi S, Yu H, Kim S, Kim H, Kim KB. Comparison of translucency, thickness, and gap width. Sci Rep. 2023; 13(1):10921.
- 44. Zhao Y, Zhang Y, Li Y, Wang C, Liu Z. Mechanical properties and deformation of orthodontic clear aligners under cyclic loading. Orthod Craniofac Res. 2023; 26(2):175–82.
- 45. Liao Y, Huang Y, Xu T, Ma L. Biomechanical effects of different aligner designs on orthodontic treatment: A systematic review. Am J Orthod Dentofacial Orthop. 2022; 161(4):513–20.
- 46. Chen Y, Wang Q, Xu Z, Zhang X. The influence of aligner thickness on the biomechanical behavior of teeth during orthodontic treatment: A finite element analysis. Comput Methods Biomech Biomed Engin. 2021; 24(11):1121–30.
- 47. Bhandari A, Chaurasia D, Vashishtha V, Singh S. Investigation of the fit and accuracy of 3D printed orthodontic aligners using optical scanning. J Orthod. 2023; 50(2):130–8.
- 48. Tan D, Shen Y, Luo Y, Yang L. Influence of thermoplastic materials on the mechanical properties of orthodontic aligners: A comparative study. Dent Mater. 2022; 38(6):747–55.
- 49. Amato M, Santoro V, Mazzarella C, Cattaneo PM. Assessment of surface properties of aligners after intraoral exposure: An in vitro study. J Orofac Orthop. 2022; 83(1):20–6.
- 50. Zhao Q, Yang M, He J, Zhang W. Long-term performance of clear aligners: A systematic review of mechanical properties and clinical outcomes. Materials. 2023; 16(8):3025.
- 51. Liu Y, Zhang M, Wang Y, Guo Y. A systematic review of the effect of different aligner attachment designs on tooth movement efficacy. Eur J Orthod. 2023; 45(1):45–52.
- 52. Kumar V, Kaur J, Thind K, Jindal P. The role of surface treatments on the adhesion and effectiveness of orthodontic clear aligners: A literature review. Am J Orthod Dentofacial Orthop. 2023; 163(5):700–8.
- 53. Balakrishnan A, Muthusamy S, Karthik R, Gopalakrishnan D. Effects of different aligner fabrication methods on thickness and fit: A comparative study. Orthod Craniofac Res. 2023; 26(3):195–202.
- 54. Gupta S, Singh N, Dey P, Singh S. Analysis of the influence of aligner material properties on the comfort and adjustment period in orthodontic patients. Angle Orthod. 2022; 92(4):497–505.
- 55. Tran H, Ho CT, Kao CT. The impact of aligner fabrication techniques on the final orthodontic outcomes: A meta-analysis. Eur J Orthod. 2023; 45(2):173–80.