(e) ISSN Online: 2321-9599;
(p) ISSN Print: 2348-6805

Original Research

Distributation of posterior superior alveolar artery in a north Indian population-A retrospective CBCT study

${ }^{1}$ Chhibber N, ${ }^{2}$ Gupta A, ${ }^{3}$ Vaid P, ${ }^{4}$ Puri C, ${ }^{5}$ Ahmed R, ${ }^{6}$ Abrol T
${ }^{1}$ Registrar, Dept. of Oral Medicine and Radiology, Indira Gandhi Government Dental College \& Hospital, Jammu, J\&K- UT, India;
${ }^{2}$ Demonstrator, Dept. of Public Health Dentistry, Indira Gandhi Government Dental College \& Hospital, Jammu, J\&K- UT, India;
${ }^{3}$ Senior lecturer, Dept of Paediatric and Preventive Dentistry, Desh Bhagat Dental College, Punjab, India;
${ }^{4}$ Registrar, Dept. of Periodontology, Indira Gandhi Government Dental College \& Hospital, Jammu, J\&K- UT, India;
${ }^{5}$ Registrar, Dept. of Prosthodontics, Crown and Bridge and Implantology, Indira Gandhi Government Dental College \& Hospital, Jammu, J\&K- UT, India;
${ }^{6}$ Senior Lecturer, Dept of Orthodontics Dentofacial Orthopaedics, Divya Jyoti Dental College, Modinagar, UP, India

Abstract

: Background and Aim:- The purpose of the present retrospective study was to characterize the Prevalence, Shape, Diameter and Measurement of distance from the sinus and alveolar crest of Posterior Superior Alveolar Artery(PSAA) in north India population with Cone Beam Computed Tomography and to emphasize its importance for any surgical procedure. Materials and Methods:- Fifty high quality maxillary CBCT scan of the patients undergoing sinus augmentation procedure or implant therapy were included in the study. The visibility of the PSAA on the CBCT examinations were made using Care stream software version 5.1 Dental LLC, Atlanta, GA, USA. The data of the CBCT images were sliced in coronal and cross section. CBCT images were evaluated to assess the shape, diameter of intrabony indentation and to measure the distance of PSAA from alveolar crest and sinus in relation to first maxillary molar. Result:- Out of 50 patients scan , 32 were females(64%) and 18 males(36%) patient of age 14- 77 yrs which were further divided into two age groups first group between 14$46 \mathrm{yrs}(50 \%)$ and second between $47-77 \mathrm{yrs}(50 \%)$. Maximum 22 scans (44%) showed type I shape and out of 22 maximum scans were observed in second age group. When diameter of the arteries were classified, 68% of the artery was $<1 \mathrm{~mm}$ and 100% artery was visualized in of all scans and it was observed that most common position was below the Schneidenan membrane(60% i.e. equal in both age groups). The average distance from the floor of the sinus to the lower border of the artery for age group1 was 4.592 ($\mathrm{SD} \pm 2.6964$), age group2 was $7.264(\mathrm{SD} \pm 5.2962$) (p value is 0.029) which showed significant statistical difference. When we compared distance from sinus to lower border of artery than the mean distance for dentulous was 5.512 ($\mathrm{SD} \pm 3.8520$) and for edentulous 8.113 ($\mathrm{SD} \pm 6.3591$) i.e. increase in distance was observed in edentulous patient than dentulous patient (p value 0.124). Conclusion:- The visibility of the PSAA on CBCT images was stated higher. The PSAA was more visible to the alveolar crest in the first molar area. CBCT scan is recommended as a routine examination prior to a sinus floor evaluation, LeFort, modified Caldwell-Lucor excisting bone for maxillary bone grafts surgical procedures.

Key words:- CBCT, Posterior Superior Alveolar Artery, Sinus, Surgical.
Received: 17 October, 2021
Accepted: 19 November, 2021
Corresponding author: Chhibber N, Registrar, Dept. of Oral Medicine and Radiology, Indira Gandhi Government Dental College \& Hospital, Jammu, J\&K- UT, India

This article may be cited as: N Chhibber, A Gupta, P Vaid, C Puri, R Ahmed, T Abrol. Distributation of posterior superior alveolar artery in a north Indian population-A retrospective CBCT study. J Adv Med Dent Scie Res 2021;9(12):50-55.

INTRODUCTION

Posterior superior alveolar artery (PSAA) is the branch of maxillary artery that supplies lateral sinus
wall and its overlying membrane ${ }^{1}$. The blood supply of the maxillary sinus and Schneiderian membrane comes from the maxillary artery. The maxillary artery
is branched into 5 arteries: posterior superior alveolar artery (PSAA), infraorbital artery (IOA), artery of the pterygoid canal, descending palatine artery, and sphenopalatine artery ${ }^{2}$. These branches descends on the maxillary tuberosity which further branches out, that enter the alveolar process and supply posterior teeth and the maxillary gingiva. The infraorbital artery is a continuation of the internal maxillary artery, they both anastomose to a common vessel at the lateral antral bony wall. To avoid laceration during sinus floor elevation and surgical procedure, it is important to know clinically the location of PSAA. For implant placement, quality and quantity of the alveolar bone should be sufficient. In posterior maxilla, resorption of alveolar bone and pneumatization of maxillary sinus cavity compromises dental implant therapy, thus assessment of alveolar bone is essential. For the preservation of vitality of the maxillary region, for agumentation and for elevation of sinus floor adequate blood supply to maxilla is mandatory.
Knowledge of blood supply allows dental practitioner to prevent local bone necrosis and to optimize regional healing via proper vascularization of the graft materials, preserving the vitality of the affected maxillary region and to avoid unnecessary complications
CBCT is important imaging tool to assess the location of PSAA, to evaluate bone dimension, recognize specific anatomical landmarks, and to detect sinus pathologies. Because of size and cost effectiveness, high-speed scanning, sub millimeter resolution, low patient radiation dose and interactive analysis, it is preferred over computed tomography (CT) ${ }^{3}$.
The aim of the present study was to assess diameter, prevalence, shape and position of the PSAA and its relationship to the alveolar crest and floor of maxillary sinus.
To characterize the Prevalence, Shape, Diameter and Measurement of distance from the sinus and alveolar crest of Posterior Superior Alveolar Artery(PSAA) in north India population with Cone Beam Computed Tomography and to emphasize its importance for any surgical procedure.

MATERIAL AND METHOD

A retrospective study was planned after formal approval from the review board of our institution. Fifty high quality maxillary CBCT scan (coronal and cross section) of the patients undergoing sinus augmentation procedure or implant therapy were included in the study and low quality images such as scattering, inferior level of window exposure and having any pathology were excluded from the study.

The data was collected from CBCT Diagnostic Research Center (Delhi-NCR).
The images were obtained at $74-80 \mathrm{kvp}, 10 \mathrm{~mA}, 10.80$ sec , voxel size of $76 \mu \mathrm{~m} \times 76 \mu \mathrm{~m} \times 76 \mu \mathrm{~m}$, resolution of 0.75 mm , range of exposure $236-280 \mathrm{mGy} . \mathrm{cm}^{3} \pm$ 20% and the small field of view (FOV) size of $5 \mathrm{~cm} \times$ 3.75 cm and were created in DICOM format, evaluated by axial, cross-sectional and sagittal reconstruction with a thickness of 1 mm and a cutting interval of 1 mm . . The visibility of the PSAA on the CBCT examinations were made using Care stream software version 5.1 Dental LLC, Atlanta, GA, USA. The images were studied by three members of radiology team independently. All the radiologists measured same variations in the present study. Out of 50 patients scan , 32 were females(64%) and 18 males (36%) patient of age 14- 77 yrs which were further divided into two age groups first group between $14-46 \mathrm{yrs}(50 \%)$ and second between 4777 yrs (50%).
The data of the CBCT images were sliced in coronal and cross sections. CBCT images were evaluated to assess the shape of intrabony indentation and to measure the distance of PSAA from alveolar crest in relation to first maxillary molar as well as distance of PSAA from maxillary sinus. The shape of intrabony indentation was classified into 4 types: Type I (as an arc smaller than a half circle), Type II (as an arc larger than a half circle), Type III (as a circular intrabony canal), and Type IV (as a tunnel on the lateral wall of maxillary sinus). The diameter of the arteries was classified into 3 groups: group $1(<1 \mathrm{~mm})$, group $\mathrm{II}(1 \mathrm{~mm}-2 \mathrm{~mm})$ and group $\mathrm{III}(>2 \mathrm{~mm})$.
For evaluating position of PSAA, it was divided into 4 positions: below the schneidenan membrane (POSITION I), outer cortex of the lateral sinus wall (POSITION II), between the sinus wall (POSITION III) and intraosseous (POSITION IV).

In all cases measurements were taken to determine the distance from the alveolar crest of maxillary first molar (DFC) and floor of maxillary sinus (DFS).
The mean values and standard deviations of the measuring results were calculated. All data was analyzed using the statistical software package SPSS 19.0 (IBM, NY, USA).

RESULT

Out of 50 patients scan, 32 were females(64%) and 18 males(36%). Patient of age 14-77 yrs which were further divided into two age groups first group between 14-46yrs (50%) and second between 4777yrs (50\%) (TABLE 1)

TABLE 1: Age group wise and gender wise distribution of posterior superior alveolar artery

Age Group (in years)	Gender	
	Female	Male
$14-46$	$16(64 \%)$	$9(36 \%)$
$47-77$	$16(64 \%)$	$9(36 \%)$

The shape of PSAA in relation to first molar, intra-bony indentation and the prevalence, in different age groups and gender was as follows; Maximum 22 scans (44%) showed type I shape and out of 22 maximum scans were observed in age group 2 (12 scans 48%) followed by type III (30%), type II (20%) than type IV (6%) (p value is 0.773). Gender-wise maximum scan was for type I having 22 scans in which 44.4% were observed in males patient and 43.8% in females patient. Least cases of type IV was observed i.e. 3 cases, in which all were females (p value is 0.460).TABLE 2, FIG 1.

TABLE 2: Age group wise and gender wise, Shape of posterior superior alveolar artery

Variable		Shape				p-value
		I	II	III	IV	
Age group	$14-46$ yrs	$10(40 \%)$	$5(20 \%)$	$9(36 \%)$	$1(4 \%)$	0.773
	$47-77 \mathrm{yrs}$	$12(48 \%)$	$5(20 \%)$	$6(24 \%)$	$2(8 \%)$	
Gender	Female	$14(43.8 \%)$	$7(21.9 \%)$	$8(25 \%)$	$3(9.4 \%)$	0.460
	Male	$8(44.4 \%)$	$3(16.7 \%)$	$7(38.9 \%)$	$0(0 \%)$	

Fig 1: (a) : an arc smaller than a half circle; (b) an arc larger than a half circle; (c) a circular intrabony canal; (d) as a tunnel on the lateral wall of maxillary sinus.

When diameter of the arteries were classified, 68% of the artery was $<1 \mathrm{~mm}, 32 \%$ was $1-2 \mathrm{~mm}$ and 0% was $>2 \mathrm{~mm}$. In age group1, maximum 18 cases showed the diameter $<1 \mathrm{~mm}(\mathrm{p}$ value 0.544$)$ and gender wise maximum 24 cases showed the diameter <1mm in female patients(p value 0.157). No significant correlation between diameter of the artery and age and gender was observed. TABLE 3, FIG 2.

TABLE 3: Age group wise and gender wise, diameter of posterior superior alveolar artery

Variable		Diameter group			p-value
Age group		$14-46$ yrs	<1mm	$\mathbf{1 - 2 m m}$	$>2 \mathbf{m m}$
	$47-77 \mathrm{yrs}$	$16(64 \%)$	$7(28 \%)$	$0(0 \%)$	0.544
GENDER	Female	$24(75 \%)$	$0(0 \%)$		
	Male	$10(55.6 \%)$	$8(44.4 \%)$	$0(0 \%)$	$0(0 \%)$

Fig 2: The diameter of the arteries (a) <1mm; (b) $1 \mathbf{m m}-2 \mathrm{~mm}$.
Artery was visualized in 100% of all scans and it was observed that most common position was below the Schneidenan membrane(60% i.e. equal in both age groups)Fig 3(c) followed by 30% at outer cortex of the lateral sinus wall, 6% showed intraosseous and 4% between the sinus wall(p value 0.402) and gender wise
maximum 19 cases i.e. 59.4% showed the position below the Schneidenan membrane in females patient(p value 0.313) which showed no significant result. TABLE 4

TABLE 4: Age group wise and gender wise, position of posterior superior alveolar artery

Variable		Position				p-value
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
Age group	$14-46$ yrs	$15(60.0 \%)$	$9(36.0 \%)$	$0(0 \%)$	$1(4.0 \%)$.402
	$47-77 \mathrm{yrs}$	$15(60.0 \%)$	$6(24 \%)$	$2(8 \%)$	$2(8 \%)$	
GENDER	Female	$19(59.4 \%)$	$8(25 \%)$	$2(6.3 \%)$	$3(9.4 \%)$	0.313
	Male	$11(61.1 \%)$	$7(38.9 \%)$	$0(0 \%)$	$0(0 \%)$	

The average distance from the floor of the sinus to the lower border of the artery for age groupl was 4.592 ($\mathrm{SD} \pm 2.6964$), age group2 was $7.264(\mathrm{SD} \pm 5.2962)$ (p value is 0.029) [(Table 5 (A)] which showed significant statistical difference and the distance from alveolar crest to the lower border of the artery for age group1 was 4.620 ($\mathrm{SD} \pm 3.0024$), age group2 was 4.128 ($\mathrm{SD} \pm 2.6586$) (p value is 0.542) which showed no significant result. Gender wise, distance from floor of the sinus to the lower border of the artery for female was 5.263 ($\mathrm{SD} \pm 2.5820$), male was 7.111 ($\mathrm{SD} \pm 6.3748$) having p value 0.153 and the distance from alveolar crest to the lower border of the artery for female was 4.131 ($\mathrm{SD} \pm 2.6294$), male was $4.806(\mathrm{SD} \pm 3.1570)$ (p value is 0.42) which showed no significant result. [TABLE 5 (B), FIG 3]

TABLE 5 (A): Age group wise, distance from artery to alveolar crest and distance from artery to floor of sinus

Variable	Age group	Mean	Std. Deviation	p- value*
${ }^{\text {\# }}$ DFS	$14-46 \mathrm{yrs}$	4.592	2.6964	0.029^{*}
	$47-77 \mathrm{yrs}$	7.264	5.2960	
${ }^{\text {\# }} \mathbf{D F C}$	$14-46 \mathrm{yrs}$	4.620	3.0024	0.542
	$47-77 \mathrm{yrs}$	4.128	2.6586	

*P < 0.05- Significant
\# (DFC): The distance from the alveolar crest of maxillary first molar
\# (DFS): Distance from Floor of maxillary sinus
Table 5 (B): Gender wise, distance from artery to alveolar crest and distance from artery to floor of sinus

Variable	Age group	Mean	Std. Deviation	p- value
${ }^{\text {\# DFS }}$ DFS	Female	5.263	2.5820	0.153
	Male	7.111	6.3748	
\# $\mathbf{D F C}$	Female	4.131	2.6294	0.422
	Male	4.806	3.1570	

\# (DFC): The distance from the alveolar crest of maxillary first molar
\# (DFS): Distance from Floor of maxillary sinus

Fig 3: (a) Shape of PSAA; (b) the distance from the alveolar crest of maxillary first molar(DFC) and floor of maxillary sinus(DFS); (c)Position of PSAA below the schneidenan membrane (POSITION I).

Out of 50 scans, 42 scans (84%)was dentulous and 8 scans (16%)was edentulous. When we compared distance from sinus to lower border of artery than the mean distance for dentulous was $5.512(\mathrm{SD} \pm 3.8520)$ and for edentulous $8.113(\mathrm{SD} \pm 6.3591)$ i.e. increase in distance was observed in edentulous patient than dentulous patient (p value 0.124). When we compared distance from bone cortex to lower border of artery than the mean distance for dentulous was $4.267(\mathrm{SD} \pm 2.7976)$ and for edentulous 4.937 ($\mathrm{SD} \pm 3.0491$) (p value 0.543) which was found to be statistically non significant. TABLE 6

Table 6: Comparison of distance from artery to alveolar crest and distance from artery to floor of sinus in dentulous and edentulous group

Variable	group	Mean	Std. Deviation	p- value
DFS	Dentulous	5.512	3.8520	0.124
	Edentulous	8.113	6.3591	
DFC	Dentulous	4.267	2.7976	0.543
	Edentulous	4.937	3.0491	

DISCUSSION

In the present study, Maximum cases were of type I shape (44%) in age group2 (48%) and least cases of type IV (6\%). Gender-wise type I (44\%), were observed in males 44.4% patient and 43.8% in females patient. Lee J et al^{4} reported maximum cases(24.7%) with an arc smaller than a half circle shape of PSAA and minimum cases(12.3\%) with of tunnel on lateral wall of maxillary sinus, which is in accordance with the present study. Elian et al ${ }^{5}$ reported 24.7% cases with arc smaller than half circle shape of PSAA. There was no correlation found between age, gender and shape of artery in literature.
In the present study, diameter of the arteries $<1 \mathrm{~mm}$ was seen in 68% of cases, and 0% cases was reported with diameter $>2 \mathrm{~mm}$. Guncu G et al(2011) ${ }^{1}$ and Ella et $\mathrm{al}(2005)^{6}$, in their sudies found mean diameter 1.3 and 1.2 mm respectively. Our study is in accordance with IIguy D et $\mathrm{al}(2013)^{7}$ who found diameter $<1 \mathrm{~mm}$ (68.9%).No significant correlation between diameter of the artery,age and gender was observed in our present study which was in accordance with Guncu G et $\operatorname{al}(2011)^{1}$. IIguy D et $\operatorname{al}(2013)(39 \%)^{7}$ and Kim et $\mathrm{al}(2006)^{8}$ found average diameter of artery higher in males. Mardinger et al(2007) ${ }^{9}$ put forth that older patients have wider diameter but could not find significant correlation between gender and diameter of canal.
Findings from the present study reported that 100% of all our scans identified the presence of artery were below the Schneidenan membrane whereas, Kurt et $\operatorname{al}(2014)^{10}$, Guncu G et $\mathrm{al}(2011)^{1}$, Elian et $\mathrm{al}(2005)^{5}$ and Mardinger et $\mathrm{al}(2007)^{9}$ reported prevalence of artery in $71.4 \% 64.5 \%, 52.9 \%$ and 55% respectively. In the present study we examined position of artery below the Schneidenan membrane(60%), at outer cortex of the lateral sinus wall(30\%), intraosseous(6%) and between the sinus wall(4\%), this explains the higher incidence in present study and also the location of PSAA has been said to be in closer proximity with the maxillary first molar. Elian et al^{5} examined intraosseous branch on outer or inner wall and Guncu G et al(2011) ${ }^{1}$ examined intraosseous, below Schneiderian membrane and outer cortex of lateral sinus wall. Maximum cases reported were
below the Schneidenan membrane(60\%) in the present study which was in accordance with, Guncu et $\mathrm{al}(2011)^{1}$ who reported maximum cases intraosseous(68.2\%).
In the present study, distance from floor of the sinus to the lower border of the artery in female was 5.263 ($\mathrm{SD} \pm 2.5820$), male was 7.111 ($\mathrm{SD} \pm 6.3748$) and the distance from alveolar crest to the lower border of the artery for female was $4.131(\mathrm{SD} \pm 2.6294)$, male was 4.806 (SD ± 3.1570).IIguy et $\mathrm{al}(2013)$ found the mean distance from the artery to the alveolar crest in females $7.50 \pm 3.03 \mathrm{~mm}$ and $8.34 \pm 3.43 \mathrm{~mm}$ in males and from the artery to the antral floor was 9.29 mm in females and 8.66 mm in males whereas, Güncü et $\mathrm{al}(2011)^{1} .7 .8 \pm 0.3 \mathrm{~mm}$ and by Mardinger et al($\left(2007^{9}\right)$, was $7-8 \mathrm{~mm}$. These differences can be explained by the variation in the positions of arteries anatomically in different group of population.
In the present study, distance from sinus to lower border of artery for dentulous was 5.512 mm and for edentulous 8 mm and the distance from bone cortex to lower border of artery for dentulous was 4.267 mm and for edentulous 4.937 mm . No such study defining the relation of distance of dentulous and edentulous with position of PSAA have been reported in literature till date.

CONCLUSION

The result from this study suugested that CBCT scan is a valuable tool in evaluating PSAA shape, position, diameter and distance before sinus and implant surgery. Although variations exist in every patient. keeping all these facts in mind and since no such study has been conducted in North India population, that is why the current study has been designed. the knowledge of the present study may assist surgeons and forensic odontologist.

REFERENCES

1. Guliz N. Guncu Yagmur D. Yildirim Hom-Lay Wang Tolga F. Tozum. Location of posterior superior alveolar artery and evaluation of maxillary sinus anatomy with computerized tomography: a clinical study. Clin. Oral Impl. Res..2011;XX:1-4.
2. Choi J, Park HS. The clinical anatomy of the maxillary artery in the pterygopalatine fossa. J Oral Maxillofac Surg 2003; 61: 72-78.
3. Scarfe WC, Farman AG, Sukovic P. Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc 2006; 72: 75-80.
4. Lee JY , Kim HC , Park I, Lee SC. Distribution of the maxillary artery related to sinus graft surgery for implantation. kaidimplant.42-48.
5. Elian, N.,Wallace, S., Cho, S.C., Jalbout, Z.N. \& Froum, S. (2005) Distribution of the maxillary artery as it relates to sinus floor augmentation. International Journal of Oral\& Maxillofacial Implants 20: 784-787.
6. Ella, B., Sedarat, C., Noble Rda, C., Normand, E., Lauverjat, Y., Siberchicot, F., Caix, P. \& Zwetyenga, N. (2008) Vascular connections of the lateral wall of the sinus: surgical effect in sinus augmentation. International Journal of Oral \& Maxillofacial Implants 23: 1047-1052.
7. Dilhan Ilgüy, Mehmet Ilgüy, Semanur Dolekoglu, Erdogan Fisekcioglu. Evaluation of the posterior superior alveolar artery and the maxillary sinus_with CBCT. Braz Oral Res., (São Paulo) 2013 Sep-Oct;27(5):431-7.
8. Kim, M.J., Jung, U.W., Kim, C.S., Kim, K.D., Choi, S.H., Kim, C.K. \& Cho, K.S. (2006) Maxillary sinus septa: prevalence, height, location, and morphology. A reformatted computed tomography scans analysis.Journal of Periodontology 77: 903-908.
9. Mardinger, O., Abba, M., Hirshberg, A. \& SchwartzArad, D. (2007) Prevalence, diameter and course of the maxillary intraosseous vascular canal with relation to sinus augmentation procedure: a radiographic study. International Journal of Oral and MaxillofacialSurgery 36: 735-738.
10. Kurt MH, Kurşun EH, Alparslan YN, Öztaş B. Posterior superior alveolar artery evaluation in a Turkish subpopulation using CBCT.Cdr.2014; 38(2): 12-19.
