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ABSTRACT:  
Leucine-rich repeat-containing G protein coupled receptor 5 (LGR5) is a biomarker for cancer stem cell which has been responsible 

for the cancer development and progression. After the validation of LGR 5 as a marker of intestinal stem cells, the field has become 

more apparent and led to many new avenues of research. Recently, studies are also supported that LGR5 is overexpressed in diverse 

types of human cancers, including colorectal, gastric, esophageal, hepatocellular carcinomas and pancreatic adenocarcinoma. This 

emerging technology opens new possibilities of using cultured adult stem cells for drug development, disease modeling, gene therapy 

and regenerative medicine. This review describes the expression of LGR5 stem cells in HNSCC and 

summarizes subsequent progress, promises, unresolved issues, and challenges of the field. 
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Introduction:  

G-Protein Coupled Receptors (GPCRs) G-protein coupled 

receptors belong to one of the largest and most diverse 

families of membrane proteins. In humans GPCRs are 

encoded by more than 800 genes.
1
 GPCRs are important 

signal transducers that control key physiological functions 

including immune responses, hormone, and enzyme 

release from endocrine and exocrine glands, 

neurotransmission, cardiac, smooth muscle contraction, 

and blood pressure regulation. GPCRs respond to a wide 

gamut of stimuli ranging from photons of light, to ions 

(H1 and Ca21), small organic molecules, peptides, and 

proteins.
2
 Once ligand binding has occurred, the receptor 

undergoes a change that causes the activation of cytosolic 

signaling molecules, resulting in a cellular response. 

Present day drugs for allergies, hypertension, reflux, 

depression, asthma, and cancer all act by modulating the 

activity of GPCRs. In reality, 50– 60% of all current 

therapeutic agents directly or indirectly target GPCRs.
3
 

Because of their number, diversity and critical role(s) in 

signaling, GPCRs offer extraordinary opportunities for 

development of novel drugs. Defining the molecular 

changes that accompany function in different classes of 

GPCRs is not only of fundamental scientific interest, but 

holds enormous prospects for improving our knowledge 

of stem cell biology and enhancing human health. After a 

short introduction to the description and status of GPCR 

structural biology, this review focuses on a particular 

GPCR family, the leucine rich repeat-containing G-

protein coupled receptors (LGRs). 

 

Structure of classical GPCR family members  

Structure determination of GPCRs is challenging at all 

stages, including protein expression, purification, and 

crystallization. The field is now, however, taking 

advantage of the high-throughput revolution in structural 

biology, utilizing an array of methods developed to 

stabilize and engineer GPCR proteins for crystallization 

and analysis. These methods include the introduction of 

T4 lysozyme and apocytochrome into linker regions of 
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GPCRs,
4–6

 cocrystallization with simplified monoclonal 

antibody fragments derived from camels and llamas,
7
 

thermostabilization of GPCRs by multiple systematic 

point scanning mutagenesis
8
 and protein engineering for 

example, introduction of non-native disulfide bridges. 

More standard approaches include removal of flexible 

portions of the receptor and use of high affinity ligands. 

All such approaches either reinforce crystal contacts or 

stabilize one conformational state over another.  

The use of lipid cubic phase and other bilayer mimetic 

methods and the availability of new types of solubilizing 

detergents have further increased the crystallization 

potential of GPCRs. At the time of writing, 22 unique 

GPCR structures have been deposited in the protein 

database.
9
 The molecular structure of a GPCR comprises 

three “zones” with respect to the membrane: (1) an 

extracellular region consisting of the N-terminus and three 

extracellular loops (ECL1–ECL3), (2) a transmembrane 

(TM) region consisting of seven a helical segments 

(TM1–TM7) and (3) an intracellular region consisting of 

three intracellular loops (ICL1–ICL3), an intracellular 

amphipathic helix, and the C-terminus  

A detailed analysis of the different GPCR structural 

domains is provided in Venkatakrishnan et al.
9
 Active, 

intermediate-active, and inactive states of GPCRs have 

been observed and have provided important insights into 

the general mechanism of GPCR activation.
10–12

 The 

binding of ligands to the extracellular region appears to 

result in changes to interactions between the extracellular 

domain and the transmembrane region. This results in 

subtle conformational changes in the TM core. It is 

thought to precede larger structural rearrangements in the 

membrane cytoplasm that facilitate the binding of 

intracellular effectors (e.g., heterotrimeric G proteins and 

b-arrestins).
13

 

 

Classification of GPCRs 
Nonsensory GPCRs (i.e., those excluding light-, odor-, 

and taste-receptors) have been classified according to their 

pharmacological properties: Class A are rhodopsin-like, 

Class B are secretin-like, Class C are metabotropic 

glutamate/pheromone, and the fourth Class comprises the 

frizzled/smoothened receptor families. Class A is the 

largest and has been further subdivided into four groups a, 

b, g, and 
14

 The d group contains olfactory receptors as 

well as purine, MAS-related and the leucine-rich repeat-

containing receptors (LGRs). 

 

Leucine-rich repeat-containing GPCRs (LGRs)  

The LGR proteins are a distinct subset of evolutionarily 

conserved Class A GPCRs, which harbor a rhodopsin-like 

GPCR and a large extracellular domain with multiple 

leucine-rich repeats (LRR).
15

 LRRs are structural motifs 

that consist of a conserved 11-residue sequence rich in 

hydrophobic amino acids; often leucines are at defined 

positions (LxxLxLxxNxL, where x is any amino acid). 

The tertiary fold of a string of LRR repeats is known as an 

a=b horseshoe.
15

 The extracellular domain links ligand 

binding to modulation of downstream LGR intracellular 

signaling pathways.
16

 LGR family proteins have been 

categorized into three main groups (A, B, and C), 

according to the relative abundance of LRRs in the 

ectodomain, the presence of a low density lipoprotein 

receptor class A domain (LDLa) and the length of a hinge 

region connecting the GPCR region to the extracellular 

domain.
17,18

 

Type A LGR receptors are characterized both by a long 

hinge region and by having seven to nine LRRs in their 

ectodomain. The glycoprotein hormone receptors, like 

follicle stimulating hormone receptor (FSHR), luteinizing 

hormone receptor (LHR), and thyroid-stimulating 

hormone receptor (TSHR), belong to the Type A receptor 

subfamily. Type C receptors have similar number of 

LRRs to Type A, but are distinguishable by a shorter 

hinge region than Type A and the presence of an LDL a 

motif. This subgroup includes the relaxin hormone 

receptors LGR7 and LGR8.
15,19 

Signal transduction via 

Type A and C receptors is thought to occur when 

hormone binding to the ectodomain triggers 

conformational changes within the transmembrane 

domain, which in turn activates heterotrimeric G proteins 

bound to the intracellular loop. This sequence of events 

results in activation of downstream signaling pathways.
20

 

The Type B receptor family LGR4, LGR5, and LGR6 are 

characterized by the presence of 
13–18

 LRRs within the 

extracellular domain. There are only three closely related 

proteins in this family. The LGR gene family was 

originally identified via in silico screens for cDNAs 

encoding proteins with homology to the Type A 

glycoprotein hormone receptor.
15,21,22

 The recent 

explosion of interest in the LGR group of GPCRs is 

chiefly due to the their presence on the epithelial stem 

cells of hair, skin, intestine, and breast tissues.
23–27

 

 

Discovery and Validation of LGR5 as Adult Stem Cell 
Marker LGR5 is a Wnt target gene

28
 and was discovered 

by researchers trying to find an interstitial stem cell 

marker.
29

 It has been known for many decades that the 

intestinal epithelium regenerates constantly
23

 and a small 

population of stem cells residing at the base of the 

intestinal crypts drives this regeneration process.
30 

However, the identity of the crypt stem cells remained 

elusive because of a lack of specific markers. Epithelial 

homeostasis in the adult intestine is orchestrated by 

several signaling pathways including EGFR,
31

 EpH,
32

 

Notch,
33

 Hedgehog,
34

 and Wnt.
35

 Wnt signaling plays a 

critical role in maintaining intestinal epithelial cell 

proliferation.
35

 Hyperactivation of the Wnt pathway is 

associated with adenomatous transformation of the 

intestinal epithelium 
36

 [similar to adenomatous 

transformation caused by loss of the tumor suppressor 

gene, adenomatous polyposis coli (APC) 
36

] and is the 

principal cause of colon cancer in humans.
37,38

 The role 

that Wnt signaling plays in the physiology of the intestine 

suggested that one or more Wnt target genes could be 

stem cell markers. Clevers and coworkers identified a Wnt 

driven genetic programme that is activated in APC-mutant 

human colon cancer cells.
29

 

The expression programme consists of core set of 80 

genes. Although the majority of these genes are expressed 
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throughout the proliferative crypt compartment 
28,29

 and in 

mature Paneth cells,
39

 the expression of several Wnt target 

genes appeared to be restricted to the base of the crypts, 

that is, the stem cell compartment. Of the basally 

expressed genes, LGR5 is specifically expressed in small 

wedged-shaped cells present in between the Paneth cells 

at the base of the small intestinal crypts. These wedged-

shaped cells are known as “crypt base columnar” (CBC) 

cells and had been identified in 1974 by Cheng and 

Leblond using electron microscopy.
40

 CBC cells are 

morphologically immature cells that gained prominence 

as a candidate stem cell population following the 

publication of the “stem cell zone” model by Bjerknes and 

Cheng.
41

 LGR5 has now emerged as a candidate stem cell 

marker in the intestinal crypts. Further examination of 

LGR5 expression patterns in the mouse found discrete 

populations of LGR5 expressing cells (LGR51) in other 

organs, including skin, large intestine, stomach, mammary 

gland, tongue, kidney, and endometrium,
23–25,42–46

 

suggesting that LGR5 is a potential “universal epithelial 

stem cell marker.”
44,47

 To validate the LGR51 population 

as adult epithelial stem cells, in vivo lineage-tracing 

experiments were conducted on LGR5-expressing CBC 

cells in mouse small intestine.
23

 In vivo lineage tracing is 

a genetic fate-mapping technique in which heritable 

genetic marks are introduced into candidate stem cell 

populations in situ in living tissues.
48

 

The descendants of these marked stem cell candidates can 

be probed in situ for the introduced genetic markers.48 A 

marked stem cell candidate is said to be multipotent if the 

entire set of differentiated cell lineages can be traced back 

to a single stem cell and long-term production of marked 

cell lineages in a given tissue exhibits the self-renewal 

capacity of the stem cell candidate.48 Thus a candidate 

cell demonstrating both multipotency and self renewal 

capacity in this system fulfills the requirements to be 

called an adult stem cell (possessing “stemness”).
48

 To 

evaluate the “stemness” of LGR51 populations in vivo 

using lineage tracing, a heritable-inducible lacZ reporter 

gene was introduced into LGR5expressing cells. Initially 

resulting in the appearance of lacZ1 cells in the CBC 

compartment within the crypt base,
23

 over the course of 

the week the progressively expanding lacZ1 progeny were 

observed extending from the crypt base towards the tips 

of interstitial villi. Similar observations were also made in 

colon.
23

 Thus, individual lacZ1 tracing units were present 

in all epithelial cell lineages and persisted throughout the 

life of the organism, identifying LGR51 cells as a truly 

multipotent, self-renewing population of adult intestinal 

stem cells. In vitro, small numbers of LGR1 cells are able 

to generate self organizing, self-renewing epithelial 

organoids with an architecture and cell composition that 

are remarkably similar to in vivo crypts/villus units.
49

 In 

vivo and in vitro data identify the LGR51 cells in the 

mouse intestine as the proliferating stem cells responsible 

for the daily self-renewal capacity of the mucous lining. 

In vivo lineage tracing has also been used to demonstrate 

“stemness” of LGR5expressing populations in the adult 

hair follicle, adult distal stomach, taste buds, and 

embryonic kidney.
24,25,42,43,46

 Recently it was shown that 

mammary glands can be reconstructed efficiently 

fromLGR51 cells.
45

 These reconstructed mammary glands 

exhibit regenerative capacity in serial transplantations.45 

Adult tissues that display lower turnover rates, such as the 

liver,
50

 respond to acute damage by activating Wnt 

signaling and consequentially generate LGR51 stem cells 

that result in tissue regeneration.
51

 

 

Mechanism of maintaining epithelial cell homeostasis 

by LGR5+ stem cells  

Validation of LGR5 as a stem cell marker of intestinal 

epithelial cells allowed the role of stem cells in 

homeostasis to be studied in greater depth. The stem cell-

driven process that maintains the homeostasis of 

continually renewing intestinal epithelia requires a 

delicate balance between daily production of committed 

progeny and new stem cells throughout the lifetime of an 

organism. Understanding this process in the adult stem 

cell compartment in vivo is crucial for deciphering how 

disturbance to this equilibrium contributes to disorders 

such as cancer. It has been proposed that adult stem cells 

within tissues undergo obligate asymmetric division to 

maintain the balance between production of committed 

progeny and new stem cells.
52

 However, recent studies 

have found compelling evidence of prevalently stochastic, 

symmetric cell division within the LGR51 stem cell 

compartment. In particular, multicolor lineage tracing 

experiments show that cell division in LGR51 stem cells 

is symmetric In the short-term, LGR51 stem cells rarely 

generate daughter cells that adopt divergent fates. In the 

long-term, however, the multicolor stem cell pool is 

converted to a single-color population, indicating a 

gradual shift towards clonality.
53

 Thus it appears likely 

that LGR51 stem cells double daily and that adoption of 

stem cell or progenitor fate is determined stochastically. It 

has been independently demonstrated that the segregation 

of chromosomes during mitosis of LGR51 intestinal stem 

cells is random. At present the molecular mechanisms that 

stimulate LGR51 intestinal stem cell division and their 

subsequent fate are not known. 

 

Functions and mechanism of action of LGR5  

Much of our understanding of LGR5 function has come 

from the analysis of null or loss-of-function mutants. A 

knock-in mouse strain harboring a lacZ reporter gene 50 

to the region that encodes the first transmembrane domain 

creates a null allele.
54

 In homozygotes, disruption of 

LGR5 results in 100% neonatal lethality, characterized by 

gastrointestinal tract dilation and absence of milk in the 

stomach. Histological examination of the homozygote 

mice revealed fusion of the tongue to the floor of the oral 

cavity (condition called ankyloglossia), while 

immunostaining showed expression of LGR5 in the 

epithelia of the tongue and mandibles of wild-type 

embryos. Thus, neonatal lethality of the LGR5 null mice 

provided the first firm indication that LGR5 is essential in 

development. The same LGR5-null strain also 

demonstrated accelerated maturation of Paneth cells in the 

developing intestine, indicating that LGR5 may 

negatively regulate Wnt signaling during neonatal 
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intestinal development.
55

 Further evidence that LGR5 

negatively regulates Wnt signaling has also been indicated 

in colorectal cancer cell lines by overexpression of LGR5 

or reduction of LGR5 expression by RNAi.
56

 Walker et al. 

illustrated that overexpressing LGR5 in a colon cancer 

cell line suppresses the response to Wnt signaling, 

augments cell–cell adhesion, reduces clonogenicity and 

attenuates tumorigenicity.
56

 Conversely, knockdown of 

LGR5 resulted in enhancement of Wnt signaling attributes 

such as increased invasion, anchorage independent 

growth, and enhanced tumorigenicity.
56

 

R-spondins are ligands of LGR5 In 2011, it was 

discovered that R-spondin (RSPO) family proteins were 

ligands of LGR5.
57–61

 Rspondins are required for the 

production of crypts in vivo and in vitro 
49

 and have a 

strong mitogenic effect on LGR51 cells.
62,63

 The 

interaction of RSPOs and LGR5 have been assessed by 

cell surface binding assays, surface plasmon resonance, 

cell-free coimmunoprecipitation, and a tandem affinity 

purification mass spectrometry.
57–59

 The Kds of binding 

between different RSPOs and LGR5 are in the nanometer 

range, (e.g., the Kd of hRSPO1-LGR5 interaction was 

measured at 3.1 nM 
57,58

 and that Kd of RSPO3 and LGR5 

3.0 nM).
59

 R-spondins are secreted proteins of 35 kDa and 

RSPO1-RSPO4 share pair-wise amino-acid similarity of 

40–60%. The human RSPO1–4 proteins range from 234 

to 272 amino acids in length and feature: (i) a 

hydrophobic, secretion signal sequence at the N-terminus, 

(ii) adjacent cysteine-rich furinlike (FU) repeats, (iii) a 

thrombospondin Type I repeat (TSR) domain that can 

bind matrix glycosaminoglycans and/or proteoglycans, 

and (iv) a C-terminus basic amino acid-rich (BR) domain 

of varying length (Fig. 2). Although RSPOs do not initiate 

Wnt signaling, they bind LGR5, and presumably release 

its negative regulation of Wnt signaling, thus potentiating 

Wnt signaling.
58,59,64–66 

 

Implication of LGR 5 in oral dysplastic and oral 

squamous cell carcinoma  

Cancer stem cells (CSCs) were originally identified in 

acute myeloid leukemia. At later, CSCs were found in 

various other malignancies, such as lung, colon, breast, 

ovary, stomach, and liver cancers.
5,7,12,20,23,24

 CSCs play an 

important role in the process of initiation, development, 

metastasis, immune evasion and recurrence of cancers.
8,25 

OSCC is a highly heterogeneous cancer. For avoiding any 

intratumoral heterogeneity of biomarker expression, we 

chose ten HPF representative fields from different areas of 

every OSCC’s section to analyze immunostaining results. 

LGR5 is a common biomarker of CSCs and was 

expressed at the base of crypt stem cells. In this study, we 

analyzed LGR5 protein expression in OSCC and 

corresponding normal oral cavity mucosa tissues from 

190 patients and compared to clinicopathological 

characteristics. We found that LGR5 expression was 

significantly higher in OSCC tissues than that in the 

normal tissues. Moreover, it was positively associated 

with tumor size, grade, LNM, and TNM stages. 

Furthermore, Kaplan-Meier survival analysis suggested 

that OSCC patients with LGR5-positive expression had 

significantly shorter survival time than did LGR5-

negative patients. Our findings are similar to the other 

studies demonstrating that LGR5 should be effective as 

clinical biomarker for OSCC.
8,26,27

 

Angiogenesis supports the rapid growth of tumor by its 

functions of transporting nutrient and oxygen. The 

traditional angiogenesis theory was focused on the 

endothelial cells forming the neovasculature from 

preexisting vascular. However, the clinical benefits of 

anti-angiogenesis for cancer therapy is still 

unsatisfactory.
15,28

 

This may indicate that there is another mechanism of 

tumor blood supply. In 1999, Maniotis and his coworker 

found a new blood supply which directly interconnected 

to form channel-like structures by tumor cells- 

vasculogenic mimicry (VM).
16

 Accumulating evidence 

suggested that VM plays an important role in promoting 

blood supply for tumors. Results in this study 

demonstrated that positive rate of VM was significantly 

higher in OSCC samples than that in the control samples 

and its positive rate was positively associated with tumor 

size, grade, LNM, and TNM stages. Moreover, we found 

that patients with positive VM had significantly lower 

survival time than did VM-negative patients. The above 

findings suggested that VM should be involved in the 

progression and metastasis of OSCC, and could be an 

effective biomarker in conducting this dis ease. Our 

results are similar to previous studies, including those of 

OSCC and other malignancies.
20, 28-31

 

TNM stages can provide guidelines therapeutic tactics for 

patients with OSCC, however, it can’t provide entire 

information about OSCC’s bio logical behavior. 

Therefore, it is urgent to find novel and efficient 

biomarker to predict OSCC’s patient biological behavior. 

In this study, multivariate analysis suggested that LGR5 

expression, positive VM, LNM, as well as TNM stages 

are independent prognostic biomarkers for OSCC 

patients. This finding demonstrates that LGR5 and VM 

should be considered as credible biomarkers for OSCC, 

especially in predicting prognosis. 

The niche where CSCs reside is composed of 

microvessels and microlymphatic vessels. Vascular niche 

can regulate CSCs self-renewal. CSCs can promote 

angiogenesis to meet rapid tumor growth.
32

 CSCs can 

differentiate various differentiation tumor cells and 

stromal cells, including endothelial cells.
33

 So CSCs can 

mimic endothelial cells to form tube structures---VM in 

the tumor tissues. In this study, there was a positive 

association between the positive expression of LGR5 and 

VM in OSCC. This indicated that CSCs and VM should 

promote OSCC’s proliferation, progression, and 

metastasis. 

 

Conclusion 
Our article imply that LGR5 affect OSCC metastasis and 

prognosis, and combined detection of LGR5 and VM, to 

some extent, should reflect OSCC’s cell biological 

behavior, thus considering as valuable biomarkers of 

metastasis and prognosis in OSCC. 
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