Journal of Advanced Medical and Dental Sciences Research

@Society of Scientific Research and Studies NLM ID: 101716117

Journal home page: www.jamdsr.com

doi: 10.21276/jamdsr

Index Copernicus value = 85.10

(e) ISSN Online: 2321-9599;

(p) ISSN Print: 2348-6805

Original Article

To evaluate the effect of denture cleanser on sorption and solubility of different soft liners and tissue conditioners- An in vitro study

¹Bhuwaneshwer Pandey, ²Ankita Pandey, ³Akant Pandey, ⁴Arun Kumar Pandey, ⁵Dr. Shalini Pandey

¹Consultant Prosthodontist, ²Consultant Dental Surgeon, ³Consultant Physician, ⁴Consultant Surgeon, ⁵Consultant Psychiatrist, Goodwill Hospital, Aamghat Coloney, Ghazipur, UP., India

ABSTRACT:

Introduction: The success of removable complete or partial denture depends on esthetics, comfort, and function. In an edentulous individual with a complete or a partial denture prosthesis the masticatory load and functional stresses are transmitted to the bone through mucoperiosteum. These functional stresses lead to chronic soreness, pathologic changes to oral tissues, and subsequent bone loss resulting in loss of accurate adaptation of the denture to the underlying tissues. Soft liner materials, when used with ill fitting dentures, are constantly kept in a wet environment of either saliva or denture cleanser that affects their sorption and solubility. These in turn have detrimental effect on other properties. Aim: To evaluate the effect of denture cleanser on sorption and solubility of different soft liners and tissue conditioners. Materials and methods: Metal disc was fabricated to make the mould space for soft liner samples. Four materials were used, long term and short term acrylic liners; long term and short term silicone liners. Each of these were divided into four groups: first control group- all liners were kept in artificial saliva for entire period of study. Second group- liners were immersed daily in cleanser for 2 hour and then transferred to artificial saliva for rest of the day. Similarly samples of third and fourth groups were immersed in cleanser for 6 and 10 hours respectively and transferred to artificial saliva. Sorption and solubility tests were conducted and statistical analysis done. Results: Solubility values of all groups were higher than the quoted ADA specifications. Conclusion: Overall, silicones performed better than acrylics. Long term silicone was most stable. Short term acrylic was most unstable. The 10 hour immersion in denture cleanser caused significantly high sorption and solubility. Keywords: Artificial saliva, soft denture liners, solubility, water sorption

Received: 05-12-2017 Revised: 22-12-2017 Accepted: 02-01-2018

Corresponding author: Bhuwaneshwer Pandey, Consultant Prosthodontist, Goodwill Hospital, Aamghat Coloney, Ghazipur, UP., India

This article may be cited as: Pandey B, Pandey A, Pandey A, Pandey AK, Pandey S. To evaluate the effect of denture cleanser on sorption and solubility of different soft liners and tissue conditioners- An in vitro study. J Adv Med Dent Scie Res 2018;6(1):165-168.

INTRODUCTION

A resilient liner is a viscoelastic material forming all or part of the impression surface of a denture that acts as a cushion and reduces the masticatory forces transmitted by the prostheses to the underlying tissues. The friability of the supporting mucosa and the significantly higher stiffness of acrylic resin denture bases can result in tissue trauma due to force concentration or misfit of the denture base. Resilient liners help alleviate the possibility of discomfort arising from such denture base force transfer to oral mucosa.Soft denture liners are valuable when treating patients with ridge atrophy, bony undercuts, xerostomia, bruxing tendencies, congenital or acquired oral defects requiring obturation, and for dentures opposing natural dentition. In addition, soft liners are used to modify transitional prostheses after

Stage I and II implant surgery. Soft liner materials, when used with ill fitting dentures, are constantly kept in a wet environment of either saliva or denture cleanser that affects their sorption and solubility. These inturn have detrimental effect on other properties. Soft denture liners are indispensable in modern removable prosthodontics because of their key role in restoring health to inflamed and distorted denture supporting tissues. They act as cushion for denture bearing mucosa through absorption and redistribution of forces transmitted to edentulous ridges. Some of the desired properties of these soft liners are high bond strength to denture base, dimensional stability, resilience, low water sorption and solubility, good colour stability, relative ease of processing and biocompatibility. During usage, the rheological properties of these liners deteriorate and

also, they are subjected to colonization by candida albicans. Therefore, effective plaque control is necessary for clinical use of these materials. Although chemical cleansers are considered efficacious to prevent microbial colonization, daily use can affect the physical properties of the liners. Two common problems are water sorption and solubility associated with changes in the structure and properties of the soft liners.

AIM

Hence, the aim of the study was to evaluate the effect of denture cleanser on sorption and solubility of soft liners and tissue conditioners of four soft liners.

MATERIALS AND METHODS

The present in vitro study was done according to American Dental Association (ADA) specification No.12. A standard stainless steel metal disc was used to prepare test and control samples. Dimensions of the disc were as per ADA 12. Artificial saliva was prepared according to a previous study. The denture cleanser solution was prepared according to manufacturer's recommendation with 5mg of Clinsodent powder in 300 ml water; composition – Sodium perborate + Sodium lauryl sulphate; pH- 11. Metal discs were invested in dental flasks to prepare mould space for soft liner samples. All the samples were processed according to the manufacturer's recommendations. Four material groups were used, long term and short term acrylic liners (Group A and Group B) and long term and short term silicone liners (Group C and group D). A total of 80 specimens were prepared, 20 for each group. All samples were desiccated for 24 hours using silica crystals to get a stable or conditioned weight W1. Each group was then further divided into four groups (20 control specimens + 60 test specimens): First control group-(20 specimens each for Groups A1, B1, C1, D1) liner samples were immersed in artificial saliva in a thermostatically controlled water bath at 370+10C for 7 days continuously. Second group (20 test specimens each for Groups A2, B2, C2, D2) - liners were immersed daily in cleanser for 2 hour and then transferred to artificial saliva for rest 23 hours of the day. Similarly samples of third (20 test specimens each for A3, B3, C3, D3) and fourth (20 specimens each for A4, B4, C4, D4) groups were immersed in cleanser for 6 and 10 hours respectively and transferred to artificial saliva for the rest 24 hours and 20 hours of the day respectively. Solutions of artificial saliva and denture cleanser were changed daily for the entire period of study, that is 7 days. Later, all control and test samples were removed from saliva, wiped dry, weighed for saturated weight W2. They were desiccated again for 24 hrs and weighed for reconditioned weight W3. An electronic weighing machine with an accuracy up-to three decimal points was used to weigh the samples.

Table 1: Formulas for sorption and solubility

	Sorption and solubility formula given by ADA specification			
1.	Formula for Sorption- W2-W1 (mg) / surface area of disc			
2.	Formula for Solubility- W1-W3 (mg) / surface area of disc			
3.	Surface area of disc $-2\pi r$ (h +r) $= 2 \times 3.14 \times 2.5 (0.1 + 2.5) - 40.82 \text{ cm}^2$			

RESULTS

The mean results were interpreted. Both the sorption and solubility values for the long term acrylic increased with duration of immersion in cleanser, but only the solubility value of 10 hour cleanser immersion was significant compared to control. Mean sorption and solubility of long term acrylic liner (mg/cm²).

Table 2: Four	groups with r	nedium and	duration of	an immersion

 a Stoups with moutain and addation of an minorsion								
	Medium of immersion	Duration of immersion						
GROUP A	Saliva	Entire period						
GROUP B	Cleanser	2 hour						
GROUP C	Cleanser	6 hour	P<0.05					
GROUP D	Cleanser	10 hour						

DISCUSSION

The international organization for standardization categorizes soft liners as short term liners (maximum usage 30 days) and long term liners (usage > 30 days, one year/longer). Sorption is a combination of adsorption and absorption. According to the revised ADA specification 12 for denture base polymers Sorption: Increase in weight of polymer shall not be more than 0.8 mg/cm² of surface area after immersion in distilled water for seven days at $37+1^{\circ}$ C. Solubility: Loss of weight of polymer shall not be more than 0.04 mg/cm² of surface when tested

according to the specification. According to ADA 17 for tissue conditioners - Water solubility and sorption shall be less than 0.07 mg/cm² and 0.7 mg/cm² respectively when stored for 24 hours at 37°C. Kazanji MNM and Watkinson AC demonstrated percentage solubility of liners in artificial saliva was significantly higher than in distilled water. However, percentage sorption of artificial saliva was significantly lower than in distilled water. The weight loss was related to the greater solubility of plasticisers in more ionic solutions than in water. The lower uptake or sorption in artificial saliva was explained in terms of ionic impurities. Contact angle and wettability of saliva also affect the sorption. This wettability of saliva is required as an adequate lubricating layer formed over the surface of liners. This differing behaviour in artificial saliva should be considered when testing materials, since the results for artificial saliva are more likely to be clinically significant than those for distilled water.Objectives of this study were to evaluate effect of different exposure times (time dependent effect) of a commonly used denture cleanser on sorption and solubility of four soft liners. It was attempted to conduct the study under simulated mouth conditions by using artificial saliva at 37°C+1°C. Overall the silicone liners performed better than the acrylic liners. This result is in confirmation with the study by Nikawa et al. The long term silicone liner was most stable in terms of its sorption and solubility values and the short term acrylic was most unstable with high values of sorption and solubility. The reasons for the better behaviour of silicones over acrylics could be because of their better polymerization, cross-linking, low plasticiser content and more filler content. Hashem MI mentioned in his update on advances in soft denture liners, that the heat polymerised silicones had better bonding to filler and greater cross-linking leading to fewer micro-pockets for water. Brozek R and others and Pahuja RK and co-workers studied the effects of denture cleansers on the behaviour and properties of different soft lining materials and found that the silicone liners performed better than the acrylic liners.

Analysis of long term data on water sorption by acrylic liners is complicated by gradual loss of plasticiser. Plasticisers decrease the amount of water uptake. This is attributed to hydrophobic nature of the plasticisers and ability to fill micro-voids in the resin. Rate at which these materials absorbed water or lost soluble components varied with the type of material, amount of plasticisers and the solution of immersion. In this study, the long term acrylic liner demonstrated lower 10 hour sorption compared to that of silicones. However, the acrylic liners showed increased solubility owing to leaching out of the components. The composition of liner, the gelation process, pH of cleanser and time duration of exposure of liners to cleanser, all influence the physical properties of these elastomers.

The 10 hour immersion of 3 liners (long term acrylic, both silicone liners) in the cleanser caused significantly higher solubility compared to control hence immersion in the denture cleanser should be done for a shorter period. In case of short term acrylic liner solubility was high but insignificant with respect to time. Therefore, the effect of saliva may be more significant than cleanser. As stated by Garcia et al., higher ionic concentration of the denture cleanser solution compared to water led to a higher release of soluble components. These findings are in agreement

with that of Goll et al. Results of this study showed that 1 week solubility values of all groups were much above the ADA specifications. Solubility is expected to be more in more ionic solutions than in distilled water. The 1 week sorption and solubility values in previous studies were also found to be higher than the quoted ADA specifications. Mansoor NS conducted a study on the effect of denture cleansers on sorption and solubility of soft denture lining materials immersed in different time intervals, where he used distilled water, an alkaline denture cleanser and citric acid cleanser. He concluded that the general deterioration of the liner material increased with time of exposure to the cleansers. The standard values given by the specifications in distilled water cannot be applied to these elastomeric materials which are continuously bathed in saliva, as the ionic nature of saliva increases the solubility.

CONCLUSION

It is concluded that the Solubility values of all groups were higher than the quoted ADA specifications. Overall, silicones performed better than acrylics. Long term silicone was most stable. Short term acrylic was most unstable. The 10 hour cleanser immersion resulted in significantly high sorption and solubility. Hence, study suggests immersion in denture cleanser for a shorter period. The processes of sorption and solubility are continuous and materials undergo changes in their physical properties and deteriorate over time. Thus, selection of a denture cleanser and the time duration for cleansing should be carefully established to minimize changes in the properties of resilient materials.

REFERENCES

- Goll G, Smith DE, Plein JB. The effect of denture cleansers on temporary soft liners. J Prosthet Dent. 1983;50:466–72. [PubMed] [Google Scholar]
- Hadary AE, Drummond JL. Comparative study of water sorption, solubility, tensile bond strength of two soft lining materials. J Prosthet Dent. 2000;83:356– 61. [PubMed] [Google Scholar]
- 3. Craig R, Powers JM. Restorative dental materials. 11th ed. India: Mosby; 2001. [Google Scholar]
- Nikawa H, Iwanaga H, Hamada T, Yuhta S. Effects of denture cleansers on direct soft denture lining materials. J Prosthet Dent. 1994;72:657– 62. [PubMed] [Google Scholar]
- Council on dental materials and devices. Revised American dental association specification No.12 for denture base polymers. J Am Dent Assoc. 1975;90:451–58. [PubMed] [Google Scholar]
- Garcia RCMR, Leon BLTL, Oliveria VMB, Cury AADB. Effect of a denture cleanser on weight, surface roughness, and tensile bond strength of two resilient denture liners. J Prosthet Dent. 2003;89:489– 94. [PubMed] [Google Scholar]
- Nikawa H, Yamamoto T, Hamada T, Rahardjo MB, Murata H. Commercial denturedenture lining materials. Int J Prosthodont. 1995;8:434– 44. [PubMed] [Google Scholar]

- Kazanji MNM, Watkinson AC. Soft lining materials: their absorption of and solubility in, artificial saliva. Br Dent J. 1988;165:91–94. [PubMed] [Google Scholar]
- Wright PS. Composition and properties of soft lining materials for acrylic dentures. Journal of Dentistry. 1981;9:210–23. [PubMed] [Google Scholar]
- Nikawa CJH, Makihira S, Hamada J, Furukawa M, Murata H. Changes in surface roughness and colour stability of soft denture lining materials caused by denture cleansers. J Oral Rehabilitation. 2003;30:125– 30. [PubMed] [Google Scholar]
- Hashem MI. Advances in Soft Denture liners: An update. Journal of Contemporary Dental Practice. 2015;16(4):314–18. [PubMed] [Google Scholar]
- Brozek R, Koczorowski R, Rogalewicz R, Voelkel A, Czarnecka B, Nicholson JW. Effect of denture cleansers on chemical and mechanical behavior of selected soft lining materials. Dent

Mater. 2011;27(3):281–90. [PubMed] [Google Scholar]

- Pahuja RK, Garg S, Bansal S, Dang RH. Effect of denture cleansers on surface hardness of resilient denture liners at various time intervals-an in vitro study. J Adv Prosthodont. 2013;5(3):270–77. [PMC free article] [PubMed] [Google Scholar]
- Kalachandra S, Turner DT. Water sorption of plasticized denture acrylic lining materials. Dent Mater J. 1989;5:161–64. [PubMed] [Google Scholar]
- Harrison A, Basker RM, Smith IS. The compatibility of temporary soft materials with immersion denture cleaners. Int J Prosthodont. 1989;2:254– 58. [PubMed] [Google Scholar]
- Kawano F, Dootz ER, Koran A, Craig RG. Sorption and solubility of 12 soft denture liners. J Prosthet Dent. 1994;72:393–98. [PubMed] [Google Scholar]
- Mansoor NS. Effect of denture cleansers on sorption and solubility of soft denture lining materials immersed in different time Interval. Med J Babylon. 2014;11(2):465–75. [Google Scholar]