LASER IN ENDODONTICS

Sumita Giri Nishad1, Muhammad Nishad Thyath2, Meha Sharma2, Iram Zaidi2

Departments of 1Conservative Dentistry and Endodontics, 2Pedodontics and Preventive Dentistry, Shree Bankey Bihari Dental College and Research Centre, Ghaziabad, Uttar Pradesh, India

ABSTRACT:
With the rapid development of laser technology, new lasers with a wide range of characteristics are now available and being used in various fields of dentistry. Clinical studies clearly show advantages of laser treatments over currently-used conventional methods and techniques. The most important advantages are improved disinfection efficacy, more effective root canal cleaning, reduction of permeability, reduction of micro-leakage, and elimination of the need to use toxic solvents. The main aim of this review article is to give an update on lasers in endodontics.
Key words: Laser, endodontics, pulp, disinfection.

Corresponding Author: Dr. Sumita Giri Nishad, Department of Conservative Dentistry and Endodontics, Shree Bankey Bihari Dental College and Research Centre, Ghaziabad, India. E mail: sumitagirinishad@gmail.com

INTRODUCTION
The word “LASER” is widely used in dentistry. It stands for Light amplification by stimulated emission of radiation. With the rapid development of laser technology, new lasers with a wide range of characteristics are now available and being used in various fields of dentistry. Studies continue to be conducted in order to make maximum use of properties of the existing lasers in the field of endodontics.1

LASER IN ENDODONTICS
The use of lasers in endodontics has been studied since the early 1970s, and lasers have been more widely used since the 1990s. A successful endodontic therapy is when there is complete and effective cleaning of root canal.1 Traditional endodontic techniques use mechanical instruments, as well as ultrasound and chemical irrigation to shape, clean and completely decontaminate the endodontic system. There is limitation of endodontic therapy such as lateral canals with various morphologies and dimensions.2
The usefulness of the debridement, cleaning and refining of the intra-radicular space is limited, because of anatomical complexity and the difficulty of common irrigants to penetrate into the lateral canals and the apical ramifications. Hence, there is need for new materials, techniques and technologies that can improve the cleaning and decontamination of these anatomical areas.3 Dental lasers are named from chemical elements, molecules, or compounds that compose the core, or active medium, that is stimulated. This active medium can be a combination of gas, solid crystal rod, or a solid-state electronic device. Gas-active medium lasers are argon and carbon dioxide. Solid semiconductors are made with metals such as gallium, aluminum, and arsenide. Solid rods of garnet crystal are generally made from yttrium and aluminum, to which are added elements chromium, neodymium, holmium, or erbium.4
Different lasers considered for endodontic applications are the near infrared laser—diode (810, 940, 980 and 1,064 nm) and Nd:YAG(1,064 nm)—and the medium infrared lasers—Erbium, Chromium: YSGG (Er,Cr:YSGG; 2,780 nm) and Erbium:YAG (2,940 nm).5
Near infrared lasers such as Nd:YAG (from 803 nm to 1,340 nm) were the first to be used for root
decontamination delivers laser energy through an optical fibre. The medium infrared lasers, such as the Erbium (2,780 nm and 2,940 nm) laser family, with flexible, fine tips have also been used. The far infrared laser CO₂ (10,600 nm) was the first to be used in endodontics for decontamination and apical dentine melting in retrograde surgery. It is no longer used in this field with the exception of vital pulp therapy (pulpotomy and pulp coagulation).

LASER- TISSUE INTERACTION
Four type of interaction occur at tissue level.
1. Absorption is the phenomenon of the energy incident on tissue with affinity being absorbed and thereby exerting its biological effects.
2. Reflection is the phenomenon of a beam of laser light hitting a target and being reflected for lack of affinity.
3. Diffusion is the phenomenon of the incident light penetrating to a depth in a non-uniform manner with respect to the point of interaction, creating biological effects at a distance from the surface.
4. Transmission is the phenomenon of the laser beam being able to pass through tissue without affinity and having no effect.

APPLICATION OF LASER
Laser in analgesia
The pulsed ñ Nd:YAG laser is widely used as a analgesia in endodontics. Its wavelengths interfere with the sodium pump mechanism, change cell membrane permeability, alter temporarily the endings of sensory neurons, and block depolarization of C and A fibers of the nerves. B. Thermal testing
To check the vitality of the pulp, Pulsed Nd:YAG laser has been used and it is better tolerated than hot gutta percha.

LASER & DENTIN HYPERSENSITIVITY
The mechanism of laser for treatment of dentin hypersensitivity is not well explained. However Pashley suggests that it may occur through coagulation and protein precipitation of plasma in dentinal fluid or by alteration of nerve fiber activity. Laser therapy has been recommended by Kimura et al. to treat dentin hypersensitivity with effectiveness between 5.2% and 100%, depending on the type of laser and parameters used. According to authors, lasers are more effective than other treatments, although effect diminishes in severe dentin hypersensitivity. Mckarthy et al indicates that the reduction in dentin hypersensitivity could be the result of alteration of root dentin surface, physically occluding the dentinal tubules.

LASERS & PULP CAPPING
The role of LASER in direct and indirect pulp capping has proved to be useful in endodontics. Temperature increases during treatment is minimal, and may even sometime decrease while working with water spray cooling. During application of laser dentinal tubules may remain open allowing hybrid layer formation. No smear layer is produced. Another feature is very superficial thermal effect, therefore the necrotic zone is likely to be small. Examples are Er:YAG or Er,Cr:YSGG lasers which have bactericidal properties.

LASERS IN ROOT CANAL TREATMENT
The various uses of laser in root canal treatments are as follow
2. Root canal wall preparation.
3. Sweeping of Root canal and irrigation.
4. Removal of pulp remnants and debris at the apical foramen.
5. Sterilization or disinfection of infected canals.
6. Obturation with gutta percha or resin.
7. Removal of temporary cavity sealing materials, root canal sealing materials, and fractured instruments in root canals. Er,Cr:YSGG (2780nm) and Er:YAG (2940nm) can be used for access cavity preparation, root canal shaping and cleaning. Lasers such as Er:YSGG

Nishad SG et al. Laser in Endodontics.
Laser therapy is recommended for cases for which apicoectomy or periapical curettage cannot be performed, or for which standard endodontic treatment cannot be performed, because of deep post in the root canal. This treatment can be performed to accelerate wound healing in combination with endodontic or surgical treatment. Pulsed Nd:YAG and CO2 lasers are recommended for these treatments.16 This treatment generally is performed three or four times during one visit. When using the CO laser, the exit of drainage 2 must be ablated as deeply as possible at 1 or 2 W and under air cooling or local anesthesia. The aforementioned laser treatments are performed once or twice a week until the sinus tract disappears. For the pulsed Nd:YAG laser, 2 W and 20pps are the recommended parameters and the fiber tip must be inserted into the tract and drawn slowly from the root apex to the exit through the sinus tract.17

LASER IN PERIAPICAL CURETTAGE, APICOECTOMY AND RETROGRADE CAVITY PREPARATION

Because of relatively bloodless and post surgical course, coagulation, minimal cutting, sterile surgical area, swelling and scarring, vaporization and minimal or no suturing and much less or no post surgical pain, lasers proved to be effective.18 Permeability of dentin exposed by apicoectomy is one of the causes of endodontic surgery failure because microleakage and bacterial contamination trigger inflammation. The use of lasers resulted in smoother surfaces and more homogenous dentin fusion and well absorbed by the water content of the dentinal walls and consequently have a superficial ablative and decontaminating effect on the root canal surface. With vertical condensation method, obturation of canals can be done with Lasers. Anic and Matsumoto attempted to investigate whether it is possible to perform the root canal filling using sectioned gutta-percha segments and a pulsed Nd:YAG laser. With the lasers, Removal of temporary cavity sealing materials, root canal sealing materials, and fractured instruments in root canals became possible.15 In fine and strongly curved canals, however, there were many cases in which laser tips perforated the canal wall.
recrystallization, which occluded tubules and decreased permeability. 19

INDICATION AND CONTRAINDICATION OF LASERS IN ENDODONTICS 20,21

Indications-
- Teeth with lateral canal leading to periodontal involvement.
- Teeth with pulp necrosis and purulent pulpitis.
- Teeth with gangrenous changes.
- Teeth with periapical lesions up to 5mm or more.
- Teeth that have been treated at least 3 months with no success.

Contraindications-
- In advanced periodontitis cases.
- A deep crown and root fracture.
- Obliterated root canals in endodontically treated teeth.

LASER PROTECTION
The operator should be well trained to use a laser device. The surgical environment must have a warning sign and limited access. The operator, patient and the surgical team should wear protective eyewear so that any reflected energy does not damage. High volume suction must be used to evacuate the plume formed by tissue ablation, and normal infection protocol should be followed. The laser should be in good working condition. 22,23

CONCLUSION
Author concludes that with the advent of Lasers in dentistry, the complex procedures have become easier and time saving. Thus the patient care has improved.

REFERENCES